[DRAFT] A Peripatetic Course in Algebraic Topology

Julian Salazar
jsalazar01@college.harvard.edu•http://slzr.me

July 22, 2016

Abstract

These notes are based on lectures in algebraic topology taught by Peter May and Henry Chan at the 2016 University of Chicago Math REU. They are loosely chronological, having been reorganized for my benefit and significantly annotated by my personal exposition, plus solutions to in-class/HW exercises, plus content from readings (from May's Finite Book), books (e.g. May's Concise Course, Munkres' Elements of Algebraic Topology, and Hatcher's Algebraic Topology), Wikipedia, etc.

I Foundations + Weeks 1 to 3 1
1 Topological notions 1
1.1 Topological spaces 1
1.2 Separation properties 2
1.3 Continuity and operations on spaces 3
2 Algebraic notions 4
2.1 Rings and modules 4
2.2 Tensor products 5
3 Categorical notions 10
3.1 Categories 10
3.2 Functors 12
3.3 Natural transformations 14
3.4 [DRAFT] Universal properties 16
3.5 Adjoint functors 18
4 The fundamental group 19
4.1 Connectedness and paths 19
4.2 Homotopy and homotopy equivalence 21
4.3 The fundamental group 22
4.4 Applications 24
4.5 [TODO] Van Kampen's theorem 27
5 Higher homotopy groups 27
5.1 Mapping spaces 27
5.2 Operations on pointed spaces 28
5.3 Higher homotopy groups 30
6 Simplicial complexes 32
6.1 Simplicial complexes 32
6.2 Abstract simplicial complexes 34
6.3 Ordered simplicial complexes 35
6.4 Simplicial approximation 36
7 Chain complexes and simplicial homology 38
7.1 Simplicial chain complexes 38
7.2 Simplicial homology groups 39
7.3 Maps of chain complexes 40
7.4 Tensor products of chain complexes 42
8 [TODO] Simplicial objects 42
8.1 Summary 43
9 CW complexes 43
9.1 Motivation and definition 43
9.2 Operations on CW complexes 45
9.3 [TODO] Cellular approximation, etc. 45
II Week 4 onwards 45
10 Topics covered 46
10.1 July 11 (May) 46
10.2 July 12 (May) 46
10.3 July 13 (May) 47
10.4 July 14 (Chan) 47
10.5 July 15 (May) 48
10.6 July 18 (May) 48
10.7 July 19 (May) 49
10.8 July 20 (May) 49
10.9 July 21 (May) 50
10.10July 22 (May) 50

Part I

Foundations + Weeks 1 to 3

1 Topological notions

Remark. This is a review of material from point-set topology. See Munkres, or the readings [1.1-1.5] (from which some of the definitions are directly taken).

1.1 Topological spaces

Definition 1.1. A topological space (X, \mathcal{U}) is a set X, along with a set of subsets \mathcal{U} of X we call a topology on X. One requires that $\emptyset, X \in \mathcal{U}$, and that \mathcal{U} is closed under finite intersection and arbitrary union. If the topology is apparent, one simply uses X to refer to the space itself.
Definition 1.2. The elements of \mathcal{U} are called the open sets of X (in the topology \mathcal{U}). The complements of open sets in X are called closed sets. A neighborhood of a point $x \in X$ is an open set U such that $x \in U$.
Definition 1.3. The closure of a subset $A \subseteq X$, denoted \bar{A}, is the intersection of all closed sets containing A. Equivalently, \bar{A} is the union of A and its limit points (points x for which every neighborhood intersects A at some $a \neq x$).
Definition 1.4. A basis for a topology on X is a set \mathcal{B} of subsets such that every $x \in X$ is in some $B \in \mathcal{B}$, and if $x \in B^{\prime} \cap B^{\prime \prime}$ then there exists $B \in \mathcal{B}$ such that $x \in B \subseteq B^{\prime} \cap B^{\prime \prime}$. (Hence, every finite intersection in \mathcal{B} is the union of these extant $B \in \mathcal{B}$ as well.) In this way, the unions of the sets in \mathcal{B} define the topology \mathcal{U} generated by basis \mathcal{B} on X. Equivalently, we say that \mathcal{B} is a basis for the topology \mathcal{U}.
Definition 1.5. A subbasis for a topology on X is a cover \mathcal{S} of X. By including the finite intersections of \mathcal{S}, we get a basis \mathcal{B} on X. This basis generates a topology \mathcal{U} on X, and we say that \mathcal{S} is a subbasis for the topology \mathcal{U}.
Remark. Observe that a subbasis \mathcal{S} of a topology \mathcal{U} is a weaker version of a basis \mathcal{B}. When a subbasis is available, however, it is a efficient description of a topology (based on the number of sets we have to describe; by the measure of simplicity of operations, a basis is more "efficient" because we only have to consider unions). In both the basis and subbasis cases, we can think of the topology \mathcal{U} as the smallest topology containing \mathcal{S} or \mathcal{B}.

1.2 Separation properties

Definition 1.6. The separation properties are the following hierarchy of types of a topological space:

- A T_{0}-space is one where "points are distinguished", i.e., for every two points, one of the points has an open neighborhood not containing the other.
- A T_{1}-space is one where each point is a closed subset.
- A T_{2}-space or Hausdorff space if any two points have disjoint open neighborhoods.

Proposition 1.7. T_{2} implies T_{1} implies T_{0}.
Proof. The first implication follows from fixing your desired point x, and taking the union of all the open neighborhoods disjoint from it. By the Hausdorff property, that union includes all points except x. The second implication follows from noting the complement of a point is the desired open neighborhood distinguishing it from the other point.

Proposition 1.8. Metric spaces are Hausdorff.
Proof. Two distinct points x, y have a non-zero distance ϵ, which means they are separated by the disjoint basis elements $B\left(x ; \frac{\epsilon}{2}\right), B\left(y ; \frac{\epsilon}{2}\right)$.

1.3 Continuity and operations on spaces

Definition 1.9. A continuous map of topological spaces (X, \mathcal{U}) and (Y, \mathcal{V}) is a function $f: X \rightarrow Y$ such that $f^{-1}(V) \in \mathcal{U}$ for all $V \in \mathcal{V}$. That is, the preimages of open sets are open.

Remark. It suffices to check that $f^{-1}(V)$ is open for each V in a basis or a subbasis of \mathcal{V}, as preimages preserve union and intersection.

Definition 1.10. X and Y are homeomorphic if there exists a continuous map $f: X \rightarrow Y$ (called a homeomorphism) with a continuous inverse.

Remark. Homeomorphisms play the role of isomorphisms for topological spaces. Two spaces that are isomorphic (e.g., (a, b) and \mathbb{R}) have the same topological properties. Intuitively, a homeomorphism is a bijection on the underlying set, and a bijection on the open sets that preserves the relations between the open sets in the topology.

Definition 1.11. The subspace topology on $A \subseteq X$ is given by $\{A \cap U \mid U$ open in $X\}$. More abstractly, let $i: A \rightarrow X$ be an injection. Then the subset topology is given by the set of $i^{-1}(U)$ for open U.

Example 1.12. Consider $[0,1] \subseteq \mathbb{R}$ where \mathbb{R} has the usual Euclidean topology. The open sets of $[0,1]$ with the subspace topology are the usual open sets, except truncated to $[0, \ldots$) and $(\ldots, 1]$ when they cross these boundaries.

Definition 1.13. Let \sim be an equivalence relation on (X, \mathcal{U}). The quotient topology is given on the set of equivalence classes X / \sim where the open sets are sets of equivalence classes whose unions were open in X. That is, the topology \mathcal{U}^{\prime} on X / \sim is

$$
\mathcal{U}^{\prime}=\left\{U \subseteq X / \sim \mid \bigcup_{[a] \in U}[a] \in \mathcal{U}\right\}
$$

Equivalently, let $q: X \rightarrow Y$ be a surjection. Then we write $Y=X / \sim$ and define its open sets as $U \subseteq Y$ such that $q^{-1}(U)$ is open in X.
Example 1.14. The quotient topology enables the general method of gluing, whereby points in a space are identified together to give a new space. Consider $[0,1] \subseteq \mathbb{R}$ with a subspace topology, and take the equivalence relation given by the partition:

$$
\sim=\{\{0,1\}\} \sqcup\{\{x\} \mid x \in(0,1)\}
$$

One can envision this as gluing the ends of the interval together, and so we expect to get the space of a circle (with, e.g., its subspace topology in \mathbb{R}^{2}). One can check that $f(x)=e^{2 i \pi x}$ is well-defined on $[0,1] / \sim$ and a homeomorphism to S^{1}.

Remark. In a sense made precise later, the definitions for subspace and quotient topologies are dual to each other (they are with respect to an injection and a surjection, respectively).

Definition 1.15. The disjoint union topology on $X \sqcup Y$ takes as a basis the disjoint unions of an open set of X and an open set of Y (though they are in fact all the open sets).

Example 1.16. For the disjoint union topology, think about $\mathbb{R}^{1} \sqcup \mathbb{R}^{1}$. The two spaces are essentially independent (though your set has to be open in both to be called open in the union topology).

Definition 1.17. The product topology on $X \times Y$ takes as a basis the products $U \times V$ where U is open in X and V is open in Y. In the case of infinite products ΠX_{i}, we only allow basis elements whose components are X_{i} in all but finitely many places.

Example 1.18. For the product topology, think about $\mathbb{R}^{2 \prime}$ s metric space topology, which is equivalent to the product topology. The open sets are not just the (boundaryless) unions of rectangles that are products of \mathbb{R}^{1} 's open sets; these merely serve as a basis. The open sets are arbitrary unions of (arbitrarily small) rectangles; cf., the open disc.

2 Algebraic notions

Remark. This section should be review, hence the terseness. Based on class, Dummit and Foote's Abstract Algebra, and http://www.math.umn.edu/~garrett/m/algebra/notes/ 27.pdf.

2.1 Rings and modules

Definition 2.1. A (commutative, unital) ring R is a set equipped with two binary operations + and \cdot such that R is an abelian group under addition, an abelian monoid (think group without the inverse requirement) under multiplication, and that distributivity holds:

$$
a \cdot(b+c)=(a \cdot b)+(a \cdot c) .
$$

Example 2.2. We have the rings \mathbb{Z}, \mathbb{Q}, the polynomial rings $R[x]$ for any ring R, the continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$, etc., where + and \cdot correspond to addition and multiplication in the usual way.

Definition 2.3. An R-module M is an abelian group M with an " R-action" (i.e., an action with respect to both R's additive group and R's multiplicative monoid)

$$
\cdot: R \times M \rightarrow M
$$

Explicitly, we must have for all $x, y \in M$ and $r, s \in R$:

$$
\begin{aligned}
r \cdot(x+y) & =r \cdot x+r \cdot y \\
(r+s) \cdot x & =r \cdot x+s \cdot x \\
(r s) \cdot x & =r \cdot(s \cdot x) \\
1_{R} \cdot x & =x,
\end{aligned}
$$

where 1_{R} denotes R 's multiplicative identity.
Definition 2.4. The group of R-module homomorphisms $\operatorname{Hom}_{R}(M, N)$ (also known as R-linear maps) is given by the set of maps $f: M \rightarrow N$ satisfying for all $x, y \in M$ and $r \in R$:

$$
\begin{aligned}
f(x+y) & =f(x)+f(y) \\
f(r x) & =r f(x)
\end{aligned}
$$

These maps "preserve" the structure of the module. More formally, we are demanding that f is a group homomorphism that is equivariant (with respect to R 's multiplicative action). One can verify that $\operatorname{Hom}_{R}(M, N)$ is a group by pointwise addition.

Example 2.5. For $R=k$ a field, the concept of R-module coincides exactly with being a k-vector space.

Example 2.6. For $R=\mathbb{Z}$, the concept of R-module coincides exactly with being an abelian group (the action is given by repeated addition: $n g=g+\cdots+g$).

Example 2.7. Polynomial rings $R[x]$ are R-modules.

Definition 2.8. A submodule N of an R-module M is an abelian subgroup of M that is also closed under multiplication by R.

Example 2.9. For $N \subseteq M=R$, then N is a submodule exactly when it is an ideal of R.
Definition 2.10. The quotient module M / N given by an R-module M and a submodule N is the abelian subgroup M / N with the induced R-action $r(m+N)=r m+N$. We verify this is well-defined: if $m+N=m^{\prime}+N$, then $m-m^{\prime} \in N$. Then $r\left(m-m^{\prime}\right)=r m-r m^{\prime} \in N$ since N is a submodule. Then $r m+N=r m^{\prime}+N$ as desired.

2.2 Tensor products

The motivation for the tensor product $M \otimes_{R} N$ of modules M, N is that it is the "minimal" setting from which bilinear maps $M \times N \rightarrow P$ can be studied as linear maps (i.e., R-module homomorphisms) $M \otimes_{R} N \rightarrow P$. For example, if there is a natural notion of multiplication between M and N, that is a bilinear map and is thus ideally studied in $M \otimes_{R} N$.

Definition 2.11. Let $f: M \times N \rightarrow P$ be an R-bilinear module homomorphism, i.e.,

$$
\begin{array}{r}
f\left(m+m^{\prime}, n\right)=f(m, n)+f\left(m^{\prime}, n\right) \\
f(r m, n)=r f(m, n) \\
f\left(m, n+n^{\prime}\right)=f(m, n)+f\left(m, n^{\prime}\right) \\
f(m, r n)=r f(m, n)
\end{array}
$$

hold. The tensor product $M \otimes_{R} N$ is uniquely defined (up to unique isomorphism) as an R-module equipped with an R-bilinear map

$$
\otimes: M \times N \rightarrow M \otimes_{R} N
$$

such that any such R-bilinear map f, there exists a unique R-linear (i.e., an R-module homomorphism) map \tilde{f} such that

commutes; that is, $f=\tilde{f} \circ \otimes$.
Remark. By uniquely defined up to unique isomorphism, we mean that for two tensor products T, T^{\prime} and associated $\otimes, \otimes^{\prime}$, one can prove there is a unique isomorphism $i: T \cong T^{\prime}$ which satisfies $\otimes^{\prime}=i \circ \otimes$. This is why we can safely write $M \otimes_{R} N$. This characteristic is typical of universal properties, of this definition is an example.

However, this does not guarantee that a tensor product actually exists; it just states that if one did exist, it would be unique in this manner. The following rectifies that:

Proposition 2.12. Given $M \times N$, there exists a tensor product $M \otimes_{R} N$.

$$
M \otimes_{R} N=F(M \times N) / L
$$

where $F(M \times N)$ denotes the free module over the set $M \times N$, and L is the submodule generated by

$$
\begin{aligned}
\left(m+m^{\prime}, n\right)- & \left((m, n)+\left(m^{\prime}, n\right)\right) \\
\left(m, n+n^{\prime}\right)- & \left((m, n)+\left(m, n^{\prime}\right)\right) \\
& c(m, n)-(c m, n) \\
& c(m, n)-(m, c n)
\end{aligned}
$$

(implicitly working in the image of $\iota: M \times N \rightarrow F(M \times N)$).
Proof. See Garrett's notes (the universal property of a free module also comes into play). The intuitive idea is that the submodule L encodes the exact relations that enforce bilinearity on the "obvious" inclusion t.

Example 2.13. Let V, W be vector spaces over F. They have bases $\left\{v_{i}\right\},\left\{w_{j}\right\}$. The map \otimes is given by the bilinear map on the basis $\left(v_{i}, w_{j}\right) \rightarrow v_{i} \otimes w_{j}$, then extended by linearity. Hence the induced \tilde{f} (see the universal property) must satisfy

$$
\tilde{f}\left(v_{i} \otimes w_{j}\right)=f\left(v_{i}, w_{j}\right) .
$$

Example 2.14. By the tensor product relations, we have in $M \otimes N$:

$$
m \otimes 0=m \otimes(0+0)=(m \otimes 0)+(m \otimes 0),
$$

which implies $m \otimes 0=0$ for all $m \in M$. The same reasoning gives $0 \otimes n=0$ for all $n \in N$.
Example 2.15. Note that

$$
\mathbb{Z} /(2) \otimes_{\mathbb{Z}} \mathbb{Z} /(3) \cong 0
$$

To see this, note that $3 a=a$ for $a \in \mathbb{Z} /(2)$ but $3 b=0$ for $b \in \mathbb{Z} /(3)$. $3(a, b)=(a, b)=(a, 0)$. Meanwhile, $4(a, b)=(a, b)=(0, b)$. Hence $(a, b)=(a, 0)=(0, b)=(0,0)$.

Exercise 2.16. Let I,J be ideals of R. Show that

$$
R / I \otimes_{R} R / J \cong R /(I+J)
$$

Proof. Observe that

$$
\phi: R / I \times R / J \rightarrow R /(I+J), \quad \phi(a+I, b+J)=(a+I)(b+J)=a b+(I+J)
$$

is a bilinear map. For example,

$$
\begin{aligned}
\phi\left(a+a^{\prime}+I, b+J\right) & =\left(a+a^{\prime}+I\right)(b+J)=\left(a+a^{\prime}\right) b+(I+J) \\
& =\phi(a+I, b+J)+\phi\left(a^{\prime}+I, b+J\right) .
\end{aligned}
$$

Hence, it factors through a linear map

$$
\tilde{\phi}: R / I \otimes_{R} R / J \rightarrow R /(I+J)
$$

of R-modules. Certainly $\tilde{\phi}$ is surjective, since we now know the following is well-defined:

$$
\tilde{\phi}(m+I \otimes 1+J)=(m+I)(1+J)=m+(I+J) .
$$

To show injectivity, we first note that every element in $R / I \otimes_{R} R / J$ can be a written as a simple tensor of a particular form. Namely, we can rewrite a general tensor as:

$$
\begin{aligned}
\sum_{i}\left(m_{i}+I \otimes n_{i}+J\right) & =\sum_{i} m_{i} n_{i}(1+I \otimes 1+J)=\left(\sum_{i} m_{i} n_{i}\right)(1+I \otimes 1+J) \\
& =\left(\left(\sum_{i} m_{i} n_{i}\right)+I \otimes 1+J\right)
\end{aligned}
$$

Then every element of $R / I \otimes_{R} R / J$ is of the form $m+I \otimes 1+J$. Then if

$$
0+(I+J)=\tilde{\phi}(m+I \otimes 1+J)=m+(I+J)
$$

implies $m \in I+J$. Hence we can write $m=a+b$ where $a \in I$ and $b \in J$ and get

$$
\begin{aligned}
m+I \otimes 1+J & =a+b+I \otimes 1+J=b+I \otimes 1+J=b(1+I \otimes 1+J)=1+I \otimes b+J=1+I \otimes J \\
& =0
\end{aligned}
$$

which shows the kernel is trivial.
Example 2.17. We have

$$
\mathbb{Z} /(m) \otimes_{\mathbb{Z}} \mathbb{Z} /(n) \cong \mathbb{Z} /((m)+(n))=\mathbb{Z} /(\operatorname{gcd}(m, n)) .
$$

We also have

$$
k[x] /(f) \otimes_{k[x]} k[x] /(g) \cong k[x] /((f)+(g)),
$$

and if k a field then the right side is equal to $k[x] /(\operatorname{gcd}(f, g))$.

Exercise 2.18. Verify the following properties: that R is unital with respect to \otimes_{R}, that \otimes_{R} is associative, and that \otimes_{R} is commutative. That is:

$$
\begin{aligned}
& R \otimes_{R} M \cong M \cong M \otimes_{R} R \\
& M \otimes_{R}\left(N \otimes_{R} P\right) \cong\left(M \otimes_{R} N\right) \otimes_{R} P \\
& M \otimes_{R} N \cong N \otimes_{R} M .
\end{aligned}
$$

Proof. Let $r, r^{\prime} \in R, m, m^{\prime} \in M, n, n^{\prime} \in N, p, p^{\prime} \in P$. Then:

- Observe that $\phi:(r, m) \mapsto r m$ is a bilinear map:

$$
\begin{aligned}
& \phi\left(r+r^{\prime}, m\right)=\left(r+r^{\prime}\right) m=r m+r^{\prime} m=\phi(r, m)+\phi\left(r^{\prime}, m\right) \\
& \phi\left(r, m+m^{\prime}\right)=r\left(m+m^{\prime}\right)=r m+r m^{\prime}=\phi(r, m)+\phi\left(r, m^{\prime}\right) .
\end{aligned}
$$

It thus factors through a map $\tilde{\phi}: R \otimes_{R} M \rightarrow M$. We define the map $\tilde{\psi}(m)=1 \otimes_{R} m$. One checks these are inverses; e.g.,

$$
\tilde{\psi}\left(\tilde{\phi}\left(r \otimes_{R} m\right)\right)=\tilde{\psi}(r m)=1 \otimes_{R} r m=r \otimes_{R} m .
$$

- The following strategy is due to this comment. Observe that $\phi_{p}:(m, n) \mapsto\left(m, n \otimes_{R} p\right)$ is a bilinear map for fixed p :

$$
\begin{aligned}
& \phi\left(m+m^{\prime}, n\right)=\left(m+m^{\prime}, n \otimes_{R} p\right)=\left(m, n \otimes_{R} p\right)+\left(m^{\prime}, n \otimes_{R} p\right)=\phi(m, n)+\phi\left(m^{\prime}, n\right) \\
& \phi\left(m, n+n^{\prime}\right)=\left(m,\left(n+n^{\prime}\right) \otimes_{R} p\right)=\left(m, n \otimes_{R} p\right)+\left(m, n^{\prime} \otimes_{R} p\right)=\phi(m, n)+\phi\left(m, n^{\prime}\right)
\end{aligned}
$$

It thus factors through $\tilde{\phi}_{p}: M \otimes_{R} N \rightarrow M \otimes_{R}\left(N \otimes_{R} P\right)$. Let $a, a^{\prime} \in M \otimes_{R} N$. Then $\psi:(a, p) \mapsto \tilde{\phi}_{p}(a)$ is a bilinear map:

$$
\begin{aligned}
& \psi\left(a+a^{\prime}, p\right)=\tilde{\phi}_{p}\left(a+a^{\prime}\right)=\tilde{\phi}_{p}(a)+\tilde{\phi}_{p}\left(a^{\prime}\right)=\psi(a, p)+\psi\left(a^{\prime}, p\right) \\
& \psi\left(a, p+p^{\prime}\right)=\tilde{\phi}_{p+p^{\prime}}(a)=\tilde{\phi}_{p}(a)+\tilde{\phi}_{p^{\prime}}(a)=\psi(a, p)+\psi\left(a, p^{\prime}\right)
\end{aligned}
$$

where the equality $\tilde{\phi}_{p+p^{\prime}}=\tilde{\phi}_{p}+\tilde{\phi}_{p^{\prime}}$ can be verified by writing the general sum $a=$ $\sum_{i} m_{i} \otimes n_{i}$ and using the linearity of $\tilde{\phi}_{p}$ on $M \otimes_{R} N$. Hence, ψ factors through

$$
\tilde{\psi}:\left(M \otimes_{R} N\right) \otimes_{R} P \rightarrow M \otimes_{R}\left(N \otimes_{R} P\right) .
$$

One can construct an R-module homomorphism in the other direction in a similar manner, and verify that they are inverses.

- Observe that $\phi:(m, n) \mapsto n \otimes_{R} m$ and $\psi:(n, m) \mapsto m \otimes_{R} n$ are bilinear maps. For example,

$$
\begin{aligned}
& \phi\left(m+m^{\prime}, n\right)=n \otimes_{R}\left(m+m^{\prime}\right)=n \otimes_{R} m+n \otimes_{R} m^{\prime}=\phi(m, n)+\phi\left(m^{\prime}, n\right) \\
& \phi\left(m, n+n^{\prime}\right)=\left(n+n^{\prime}\right) \otimes_{R} m=n \otimes_{R} m+n^{\prime} \otimes_{R} m=\phi(m, n)+\phi\left(m, n^{\prime}\right) .
\end{aligned}
$$

They thus factor through $\tilde{\phi}: M \otimes_{R} N \rightarrow N \otimes_{R} M$ and $\tilde{\psi}: N \otimes_{R} M \rightarrow M \otimes_{R} N$ respectively. One confirms they are inverses; e.g.,

$$
\tilde{\psi}\left(\tilde{\phi}\left(m \otimes_{R} n\right)\right)=\tilde{\psi}\left(n \otimes_{R} m\right)=m \otimes_{R} n
$$

Example 2.19. Consider the following sets and elements f and g :

$$
\begin{aligned}
(f: M \times N \rightarrow P) & \in \operatorname{Hom}_{R}(M \times N, P) \\
\left(g: M \rightarrow \operatorname{Hom}_{R}(N, P)\right) & \in \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)
\end{aligned}
$$

One might hope $\operatorname{Hom}_{R}(M \times N, P)$ and $\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$ are equal, e.g., via the "obvious" currying map

$$
(g(m))(-):=f(m,-)
$$

However, this is not the case; the reason is that $f(m,-)$ is not guaranteed to be an $R-$ module homomorphism (i.e., an element of $\operatorname{Hom}_{R}(N, P)$)! In fact, the requirement for $f(m,-)$ to be a homomorphism (and for the $f \mapsto g$ map itself to be a homomorphism) is exactly the requirement for $f(-,-)$ to be bilinear:

$$
\begin{gathered}
(g(m))(r-)=f(m, r-)=r f(m,-)=r((g(m))(-)) \\
(g(r m))(-)=f(r m,-)=r f(m,-)=(r g(m))(-)
\end{gathered}
$$

Making this rigorous, one concludes that

$$
\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right) \cong \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)
$$

is the correct statement. This is the tensor-hom adjunction, which is a special case of adjoint functors that we will revisit in the section on category theory.

3 Categorical notions

3.1 Categories

Remark. This treatment is mostly from class. http://mimosa.pntic.mec.es/jgomez53/ matema/docums/villarroel-categories.pdf was used as an additional reference.

Definition 3.1. A category \mathcal{C} consists of

- A class of objects ob(C).
- A class of morphisms $\operatorname{hom}_{\mathcal{C}}(X, Y)$ for each pair of objects $X, Y \in \operatorname{ob}(\mathcal{C})$. Here, X is called the source and Y is called the target.
- A composition map $\operatorname{hom}_{\mathcal{C}}(X, Y) \times \operatorname{hom}_{\mathcal{C}}(Y, Z) \rightarrow \operatorname{hom}_{\mathcal{C}}(X, Z)$ for every three objects $X, Y, Z \in \mathrm{ob}(\mathcal{C})$. The composition of f, g is written $g \circ f$.
such that the following axioms
- Associativity: If $f \in \operatorname{hom}_{\mathcal{C}}(W, X), g \in \operatorname{hom}_{\mathcal{C}}(X, Y), f \in \operatorname{hom}_{\mathcal{C}}(Y, Z)$, then

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

- Identity: For each object X there is an identity morphism $\operatorname{id}_{X} \in \operatorname{hom}_{\mathcal{C}}(X, X)$, such that every morphism $f \in \operatorname{hom}_{\mathcal{C}}(Y, Z)$ satisfies

$$
f \circ \mathrm{id}_{Y}=f=\operatorname{id}_{Z} \circ f .
$$

hold.
Remark. Think of categories as classes of dots and arrows between dots, where if two arrows occur in sequence, they (implicitly) define a composed arrow. Associativity holds, and every dot has an implicit identity arrow to itself.

Definition 3.2. An endomorphism is a morphism with the same source and target, i.e., an element of $\operatorname{hom}_{\mathcal{C}}(X, X)$ for some object X.

Definition 3.3. An isomorphism is a morphism $f \in \operatorname{hom}_{\mathcal{C}}(X, Y)$ if there exists an inverse morphism $g \in \operatorname{hom}_{\mathcal{C}}(Y, X)$ such that $f \circ g=\operatorname{id}_{Y}$ and $g \circ f=\operatorname{id}_{X}$. The inverse morphism is necessarily unique.

Definition 3.4. A category \mathcal{C} is:

- Small if ob (\mathcal{C}) and all $\operatorname{hom}_{\mathcal{C}}(X, Y)$ are sets.
- Large if it is not small.
- Locally small if all $\operatorname{hom}_{\mathcal{C}}(X, Y)$ are sets.

Example 3.5. We can formulate the different types of mathematical objects we've encountered thus far as living and interacting in their respective categories. The following are all locally small categories:

	Set	Top $\left(\right.$ Top $\left._{\star}\right)$	Grp (Ab)	Vect $_{\mathbf{k}}, \mathbf{R}$-Mod
objects	all sets	top spaces (with basepoint)	(abelian) groups	\cdots
morphisms	functions	(pointed) cont functions	homomorphisms	\cdots
isomorphisms	bijection	(pointed) homeomorphism	isomorphism	\cdots

Definition 3.6. The category associated to a poset X is the small category where the objects are elements of X, and the morphisms are

$$
X(x, y)= \begin{cases}(x \leq y) & \text { if } x \leq y \\ \emptyset & \text { otherwise }\end{cases}
$$

Composition is given by $(y \leq z) \circ(x \leq y)=(x \leq z)$ and identity is given by $\mathrm{id}_{x}=(x \leq x)$.
Definition 3.7. The category associated to a monoid is the small category with one object *. The set of (endo)morphisms is $\operatorname{hom}_{\mathcal{C}}(*, *)=G$, where the composition law is given by $h \circ g=g h$.

Definition 3.8. The category associated to a group, denoted \mathcal{C}_{G} for a group G, is the category associated to it as a monoid. However, in this case every morphism is an isomorphism, since group elements have inverses.

Exercise 3.9. Conversely, show that a small category with one object such that every morphism is an isomorphism, is a group.

Proof. Consider the set $\operatorname{hom}_{\mathcal{C}_{G}}(*, *)$. The composition map gives a closed binary operation

$$
\operatorname{hom}_{\mathcal{C}_{G}}(*, *) \times \operatorname{hom}_{\mathcal{C}_{G}}(*, *) \rightarrow \operatorname{hom}_{\mathcal{C}_{G}}(*, *)
$$

and the axioms ensure associativity. The morphism id_{*} satisfies the properties of a group identity, and since every $f \in \operatorname{hom}_{\mathcal{C}_{G}}(*, *)$ is an isomorphism, there exists g such that $f \circ g=$ $g \circ f=\mathrm{id}_{*}$, which is exactly the inverse property for a group.

Definition 3.10. A groupoid is a small category where every morphism is an isomorphism.

Remark. In this way, we see that monoids are essentially the same as small categories with a single object. Groups are the subclass where the single object's endomorphisms are all isomorphisms, i.e., a group is a groupoid with only one object.

3.2 Functors

Definition 3.11. A (covariant) functor between categories $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Sends every object in \mathcal{C} to an object in \mathcal{D}
- Sends every morphism in $\operatorname{hom}_{\mathcal{C}}(X, Y)$ to a morphism in $\operatorname{hom}_{\mathcal{D}}(F(X), F(Y))$, such that $F(g \circ f)=F(g) \circ F(f)$ and $F\left(\operatorname{id}_{X}\right)=\operatorname{id}_{F(X)}$.
Remark. The last property can be viewed as the requirement that commutative diagrams are preserved:

goes to

Example 3.12. Let G be a group with an action ϕ on a set X. This action can be viewed as a functor

$$
F_{\phi}: \mathcal{C}_{G} \rightarrow \text { Set }
$$

given by $F_{\phi}(*)=X$, which maps morphisms from $\mathcal{C}_{G}(*, *)$ to $\operatorname{Set}(X, X)$. Hence the action is given by

$$
\phi: G \times X \rightarrow X, \quad \phi(g, x)=\left(F_{\phi}(g)\right)(x) .
$$

Similarly, $F: \mathcal{C}_{G} \rightarrow$ Top describes a G-space, and $F: \mathcal{C}_{G} \rightarrow$ Vect $_{\mathbf{k}}$ describes a G-representation.
Example 3.13. Taking the free group is a functor $F:$ Set $\rightarrow \mathbf{G r p}$. Set maps become group homomorphisms between free groups.

Example 3.14. A functor $\mathcal{C}_{G} \rightarrow \mathcal{C}_{H}$ between categories associated to two groups are group homomorphisms $G \rightarrow H$.

Example 3.15. A functor between the categories associated to two posets can be viewed as an order-preserving function.

Exercise 3.16. If $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor and $f \in \operatorname{hom}_{\mathcal{C}}(X, Y)$ is an isomorphism, then $F(f)$ is an isomorphism.

Proof. Let $f \in \operatorname{hom}_{\mathcal{C}}(X, Y)$ an isomorphism with inverse g. Then

$$
\begin{aligned}
& F(f) \circ F(g)=F(f \circ g)=F\left(\mathrm{id}_{F(Y)}\right) \\
& F(g) \circ F(f)=F(g \circ f)=F\left(\mathrm{id}_{F(X)}\right)
\end{aligned}
$$

which shows $F(f)$ is an isomorphism with inverse $F(g)$.
Remark. The contrapositive of the above is what makes invariants a powerful concept. For example, if the fundamental groups of two topological spaces are not isomorphic, then they cannot be homeomorphic spaces.

Definition 3.17. A forgetful functor is a covariant functor that loses some of the algebraic properties of the source category.

Example 3.18. There are canonical forgetful functors from each of Grp, Top, Vect ${ }_{k}$ to Set (forget the structure implied on each object's underlying set by the restricted class of morphisms). These functors are not as trivial as one might expect. Consider Grp \rightarrow Set. Group homomorphisms become non-privileged subsets of the set maps. Meanwhile, multiple groups will map to their shared underlying set.
Definition 3.19. A contravariant functor between categories $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Sends every object in \mathcal{C} to an object in \mathcal{D}
- Sends every morphism in $\operatorname{hom}_{\mathcal{C}}(X, Y)$ to a morphism in $\operatorname{hom}_{\mathcal{D}}(F(Y), F(X))$, such that $F(g \circ f)=F(f) \circ F(g)$ and $F\left(\mathrm{id}_{X}\right)=\mathrm{id}_{F(X)}$.

Remark. The last property can be viewed as the requirement that commutative diagrams are preserved, but with arrows in the opposite direction:

Remark. One can still study contravariant functors in the same realm as (covariant) functors as follows: let the opposite category $\mathcal{C}^{\mathrm{op}}$ of a category \mathcal{C} be the category where the source and target of every morphism in \mathcal{C} is reversed. Then contravariant functors $\mathcal{C} \rightarrow \mathcal{D}$ are exactly covariant functors $\mathcal{C} \rightarrow \mathcal{D}^{\mathrm{op}}$.
Example 3.20. A map $f: V \rightarrow W$ of k-vector spaces has a corresponding dual map that goes in the opposite direction

$$
f^{*}: \operatorname{Hom}(W, k) \rightarrow \operatorname{Hom}(V, k) .
$$

That is, $\operatorname{Hom}(-, k): \operatorname{Vect}_{\mathbf{k}} \rightarrow \operatorname{Vect}_{\mathbf{k}}$ reverses the direction of morphisms, making it a contravariant functor (i.e., a functor $\operatorname{Vect}_{\mathbf{k}} \rightarrow \operatorname{Vect}_{\mathrm{k}}^{\mathrm{Op}}$). A quick way to see this is that passing to a map's dual is equivalent to taking the transpose of its matrix, and that $(A B)^{T}=B^{T} A^{T}$.

3.3 Natural transformations

Definition 3.21. A natural transformation is a family of morphisms written $\alpha: F \Longrightarrow G$, where $F, G: \mathcal{C} \rightarrow \mathcal{D}$, where each $Z \in \mathrm{ob}(\mathcal{C})$ has a morphism $\alpha_{Z} \in \operatorname{hom}_{\mathcal{D}}(F(Z), G(Z))$ such that for all $\phi \in \operatorname{hom}_{\mathcal{C}}(X, Y)$, the following diagram commutes:

Remark. Intuitively, natural transformations are like morphisms of functors. They transform one functor to another while respecting the associated categories. The commutative diagram expresses that every $\phi: X \rightarrow Y$ turning into $F(\phi): F(X) \rightarrow F(Y)$, are fixed morphisms α_{X}, α_{Y} away from being $G(\phi): G(X) \rightarrow G(Y)$.

Example 3.22. Consider the functors id, $(-)^{* *}: \operatorname{Vect}_{\mathbf{k}} \rightarrow \operatorname{Vect}_{\mathbf{k}}$, where $(-)^{* *}$ is the "doubledual functor" given by

$$
V \mapsto V^{* *}=\left(V^{*}\right)^{*}=\operatorname{Hom}(V, k)^{*}=\operatorname{Hom}(\operatorname{Hom}(V, k), k),
$$

and take $\alpha_{V}: V \rightarrow V^{* *}$ given by $v \mapsto(f \mapsto f(v))$. One can verify that

commutes. Hence we have a natural transformation α : id $\Longrightarrow(-)^{* *}$.
Definition 3.23. $\alpha: F \Longrightarrow G$ is a natural isomorphism if α_{C} is an isomorphism for all objects $C \in \mathrm{ob}(\mathcal{C})$.

Example 3.24. If one restricts themselves to the category of finite vector spaces over k, then α : id $\Longrightarrow(-)^{* *}$ is a natural isomorphism. This reflects the idea that there are canonical isomorphisms $V \cong V^{* *}$ for all V (they are consistent with respect to morphisms $V \rightarrow W$ and the respective $V^{* *} \rightarrow W^{* *}$). Meanwhile, although $V \cong V^{*}$ as well, this requires a noncanonical choice of basis in each case making it impossible for the required diagrams to commute everywhere.

Remark. There is a generalization of categories known as 2-categories, where in addition to objects and morphisms between objects, there is a notion of 2-morphisms between morphisms. For example, Cat is a 2-category whose objects are small categories, whose morphisms are functors, and whose 2 -morphisms are natural transformations.

Exercise 3.25. Let \mathcal{I} be the interval category

$$
\mathcal{I}=\{0 \rightarrow 1\}
$$

(it has two objects and one non-trivial morphism). Prove that a natural transformation is precisely a functor

$$
\eta: \mathcal{C} \times \mathcal{I} \rightarrow \mathcal{D}
$$

such that the diagram of functors

commutes (this diagram lives in $\mathbf{C a t})$. Note that $\operatorname{hom}_{\mathcal{C} \times \mathcal{I}}((x, s),(y, t))$ is given by $\operatorname{hom}_{\mathcal{C}}(x, y) \times$ $\operatorname{hom}_{\mathcal{I}}(s, t)$.

Remark. This exercise is more compelling when done after learning about homotopies. It asserts that natural transformations are their categorical analogue.
Definition 3.26. Categories \mathcal{C}, \mathcal{D} are equivalent categories if there are functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ such that $F \circ G \Longrightarrow 1_{D}$ and $G \circ F \Longrightarrow 1_{C}$ are natural isomorphisms of functors.

Remark. Continuing the analogy from the exercise, an equivalence of categories is the categorical analogue of being homotopy equivalent. This notion is more useful than a potential notion of isomorphism (e.g., where $F \circ G=1_{D}$ exactly). Most importantly, an equivalence still preserves "categorical concepts" such as monomorphisms, limits, etc. (see https://en.wikipedia.org/wiki/Equivalence_of_categories\#Properties).
Example 3.27. Let \mathcal{C} be a category whose objects are non-negative integers and whose homomorphisms are

$$
\operatorname{hom}_{\mathcal{C}}(m, n)=\{n \times m \text { matrices in } \mathbb{R}\}
$$

Then \mathcal{C} turns out to be equivalent to the category $\operatorname{Vect}_{\mathbb{R}}^{\text {finite }}$. Take F as a functor from m to the "standard" \mathbb{R}^{m} and G as a functor from an n-dimensional \mathbb{R}-vector space to n. Matrices are taken to the corresponding linear maps, and vice versa.
Remark. This example exhibits that an equivalence of categories does not even ensure a bijection of objects. However, categorical concepts are preserved, which is what matters (e.g., think about the relative importance of isomorphism over equality).

Example 3.28. In algebraic geometry, the category of affine schemes is equivalent to the opposite category of commutative rings. Take F as a functor from an affine scheme to its ring of global sections, and take G as a functor from a commutative ring to its spectrum.

3.4 [DRAFT] Universal properties

Remark. This section is based on [1.5], Wikipedia, and the previously mentioned reference. We reframe via the notions of initial and final topologies as discussed by Wikipedia (not covered in class).

A universal property can be thought of as a description (with respect to other objects/morphisms) that uniquely defines an object in a category up to isomorphism, whereby the object can be thought of as the most "efficient solution" to a diagram (i.e., universal with respect to the diagram) such that all other solutions factor through it. This is terribly vague; a technical definition can be found at https://en.wikipedia. org/wiki/Universal_property. It is best to proceed by providing examples.
Example 3.29. (TODO: Universal property of the free group) https: / / en.wikipedia. org/wiki/Free_group

Example 3.30. We saw that the tensor product $M \otimes_{R} N$ of modules was defined by the universal property of being factored through by any R-bilinear maps from $M \times N$.
Definition 3.31. The pushout or fibered sum $X \cup_{Z} Y$ of morphisms $f: Z \rightarrow X$ and g : $Z \rightarrow Y$ is given by an object P and morphisms $i_{1}: X \rightarrow P, i_{2}: Y \rightarrow P$ such that

commutes, and that $\left(P, i_{1}, i_{2}\right)$ is universal for this diagram; i.e., for any other solution (Q, j_{1}, j_{2}) making such a diagram commute, there exists a unique u that makes the following diagram commute:

Example 3.32. (TODO: pushout of sets)

Example 3.33. (TODO: pushout of groups is amalgamated product)
Example 3.34. (TODO: pushout of pointed spaces is wedge product)
Definition 3.35. The pullback or fiber product $X \times_{Z} Y$ of morphisms $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ is given by an object P and morphisms $p_{1}: P \rightarrow X, p_{2}: P \rightarrow Y$ such that

commutes, and that $\left(P, p_{1}, p_{2}\right)$ is universal for this diagram; i.e., for any other solution $\left(Q, j_{1}, j_{2}\right)$ making such a diagram commute, there exists a unique u that makes the following diagram commute:

Example 3.36. (TODO: pullback of sets)
Example 3.37. (TODO: pullback of rings)
Definition 3.38. Let $f_{i}: X \rightarrow Y_{i}$ be a family of functions. The initial topology on X is the coarsest topology such that all f_{i} are continuous. It is characterized by the following property: a function $g: Z \rightarrow X$ is continuous if and only if $f_{i} \circ g: Z \rightarrow Y_{i}$ are all continuous.
(TODO: diagram)
Example 3.39. The subspace topology is the initial topology with respect to an inclusion $\operatorname{map} A \rightarrow X$.

(TODO: diagram)

Example 3.40. The product topology is the initial topology with respect to the projection maps (the underlying space is the set product).
(TODO: diagram)
Definition 3.41. Let $f_{i}: X_{i} \rightarrow Y$ be a family of functions. The final topology on Y is the finest topology such that all f_{i} are continuous. It is characterized by the following property: a function $g: Y \rightarrow Z$ is continuous if and only if $g \circ f_{i}: X_{i} \rightarrow Z$ are all continuous.
(TODO: diagram)

Example 3.42. The quotient topology is the final topology with respect to a surjective map $X \rightarrow Y$.
(TODO: diagram)

Example 3.43. The disjoint union topology is the final topology with respect to the inclusion maps (the underlying space is the disjoint set union).

```
(TODO: diagram)
```


3.5 Adjoint functors

Definition 3.44. We say that $S: \mathcal{D} \rightarrow \mathcal{C}$ and $T: \mathcal{C} \rightarrow \mathcal{D}$ are an adjoint pair of functors (where S is left adjoint to T, or T is right adjoint to S) if for all $X \in \operatorname{ob}(\mathcal{D})$ and $Y \in \operatorname{ob}(\mathcal{C})$, we have bijections $\eta_{X, Y}$ via which

$$
\operatorname{hom}_{\mathcal{C}}(S X, Y) \cong \operatorname{hom}_{\mathcal{D}}(X, T Y)
$$

such that the implicit transformations are natural in X and Y. Explicitly, for all X and Y, the pair of (covariant and contravariant, respectively) functors

$$
\begin{aligned}
& \operatorname{hom}_{\mathcal{C}}(S X,-) \cong \operatorname{hom}_{\mathcal{D}}(X, T-) \\
& \operatorname{hom}_{\mathcal{C}}(S-, Y) \cong \operatorname{hom}_{\mathcal{D}}(-, T Y)
\end{aligned}
$$

are naturally isomorphic.
Example 3.45. Consider the functors $-\otimes_{R} N: \mathbf{R}-\operatorname{Mod} \rightarrow \mathbf{R}-\operatorname{Mod}$ and $\operatorname{Hom}(N,-): \mathbf{R}$-Mod \rightarrow R-Mod. The tensor product is left adjoint to the Hom map; note that

$$
\operatorname{hom}_{\mathbf{R}-\mathbf{m o d}}(S X, Y)=\operatorname{hom}_{\mathbf{R}-\bmod }\left(X \otimes_{R} N, Y\right) \cong \operatorname{hom}_{\mathbf{R}-\mathbf{m o d}}(X, \operatorname{Hom}(N, Y))=\operatorname{hom}_{\mathbf{R}-\mathbf{m o d}}(X, T Y)
$$

via the tensor-hom adjunction we saw earlier.
Remark. This is a consequence of \mathbf{R}-mod equipped with

$$
\otimes_{R}: \mathbf{R}-\bmod \times \mathbf{R}-\bmod \rightarrow \mathbf{R}-\bmod
$$

being a closed (symmetric) monoidal category. Such categories are characterized by the property that the associated "bifunctor" (in this case \otimes_{R}), when restricted to be a functor - $\otimes_{R} N$ for some fixed N, has a right adjoint functor denoted [$\left.N,-\right]$. We will see other adjunctions of this type when discussing mapping spaces.
Example 3.46. Let $S:$ Set \rightarrow Grp be the functor that takes a set to its free group, and let $T: \operatorname{Grp} \rightarrow$ Set be the forgetful functor (taking the group to its underlying set). Then S is left adjoint to T. To see this, the desired assertion is that for any $X \in$ Set and $Y \in \mathbf{G r p}$,

$$
\operatorname{hom}_{G r p}(S X, Y)=\operatorname{hom}_{\operatorname{Grp}}\left(F_{X}, Y\right) \cong \operatorname{hom}_{\text {Set }}(X,|Y|)=\operatorname{hom}_{\text {Set }}(X, T Y),
$$

and the isomorphism follows directly from the universal property of the free group.
Exercise 3.47. Let $\epsilon: T S \Longrightarrow 1_{\mathcal{D}}$ and $\eta: 1_{\mathcal{C}} \Longrightarrow S T$ be natural transformations. Show that the diagrams

commute for all X, Y if and only if T, S are adjoint.

4 The fundamental group

Remark. Corresponding readings are [2.1-2.2], though these are not comprehensive. The presentation here is primarily from class.

4.1 Connectedness and paths

Definition 4.1. X is connected if X cannot be written as the disjoint union of two nonempty open sets.

Definition 4.2. X is path-connected if for all $x, y \in X$, there exists a continuous function $p:[0,1] \rightarrow X$ with $p(0)=x$ and $p(1)=y$ (a path between x and y).

Proposition 4.3. Path-connectedness implies connectedness.
Proof. Suppose X is path-connected but not connected, with $X=U \sqcup V$ disjoint nonempty open sets. Let $x \in U$ and $y \in V$, and let $p:[0,1] \rightarrow X$ be the path connecting them. Then

$$
[0,1]=p^{-1}(X)=p^{-1}(U \sqcup V)=p^{-1}(U) \sqcup p^{-1}(V),
$$

a disjoint non-empty union of open sets. This contradicts the fact that $[0,1]$ is connected.

Proposition 4.4. The existence of a path is an equivalence relation on points in X.
Proof. Reflexivity is given by taking $p:[0,1] \rightarrow X$ to be the constant map to x. Transitivity is given by gluing paths together (re-parameterizing so that the domain is still $[0,1]$). Symmetry is given by taking $q(x):=p(1-x)$.

Proposition 4.5. A union of (path-)connected spaces with a point in common are (path) connected. The image of a (path-)connected space under a continuous map is (path-)connected.

Proof. For connectedness:
a) Let X, Y be connected and consider $X \cup Y$ with a common element x (implicit here is that the subspace topologies on X and Y give their original topology). The key is to argue that for one of the connected $Z=X, Y$, the disjoint union $(A \cap Z) \sqcup(B \cap Z)$ is a non-empty (and necessarily disjoint, open by relativity) partition of Z, a contradiction. There exists a common element, it is WLOG in A (and thus it is in every $A \cap Z$); then, choose the other element in $B \cap Z$ (which is non-zero for some Z).
b) The disjoint non-empty open partition of a space would also partition its pre-image.

For path-connectedness:
a) Construct paths in the new space by passing through the shared point as needed.
b) The image of a path is a path.

These observations prove the corresponding statements.
Example 4.6 (Topologist's sine curve). The converse is not true, even in a metric space. Furthermore, path-connectedness is not preserved by closure (though connectedness is). Consider the graph $\Gamma=\{(x, \sin (1 / x)) \mid x \in(0,1]\} \subseteq \mathbb{R}^{2}$. Its closure is

$$
\bar{\Gamma}=\Gamma \cup(\{0\} \times[-1,1]) .
$$

is closed and bounded and also compact. Pre-closure, we had the graph of a continuous function, which is path-connected (e.g., parameterize with (0,1$]$). However, its closure remains connected, but it is not locally connected nor path-connected. Problems occur around (0,0). See http://math.stanford.edu/~conrad/diffgeomPage/handouts/ sinecurve.pdf for details.

Definition 4.7. The equivalence relation of path-connectedness induces a partition of X into path-connected components. We denote the set of path components as $\pi_{0}(X)$.

4.2 Homotopy and homotopy equivalence

Definition 4.8. Two continuous maps $f, g: X \rightarrow Y$ are homotopic, written $f \simeq g$, if there exists a continuous $h: X \times I \rightarrow Y$ (called a homotopy) such that $h(x, 0)=f(x)$ and $h(x, 1)=$ $g(x)$.

Exercise 4.9. Homotopy is a equivalence relation on continuous maps $X \rightarrow Y$.
Example 4.10. Imagine two maps f, g from $X=[0,1]$ to two curves in a space Y. Then we have a homotopy which continuously transforms the image from the first curve to the second. Note that this can fail when there is a "hole".

Definition 4.11. A function f is null-homotopic if it is homotopic to a constant function.
Definition 4.12. Two spaces X, Y are homotopy equivalent (written $X \simeq Y$) if there exist continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g \simeq i d_{Y}$ and $g \circ f \simeq i d_{X}$.

Remark. Compare this definition with X, Y being homeomorphic, where we need $f \circ g=$ id_{Y} and $g \circ f=\operatorname{id}_{X}$.

Exercise 4.13. Homotopy equivalence is a equivalence relation on topological spaces.

Example 4.14. Let $X=\mathbb{R}^{2}, Y=\{0\}$. We want to show the two are homotopy equivalent. Let

$$
\begin{array}{lll}
f: & X \rightarrow Y, & f(x, y)=0 \\
g: & Y \rightarrow X, & g(0)=(0,0) .
\end{array}
$$

Then $f \circ g=i d_{Y}$, so $f \circ g \simeq i d_{Y}$. Meanwhile, $(g \circ f)(\vec{v})=(0,0)$. We need $g \circ f \simeq i d_{X}$. Consider the following null-homotopy:

$$
H: X \times[0,1] \rightarrow X, \quad H(\vec{v}, t)=t \vec{v} .
$$

Then $H(\vec{v}, 0)=0 \vec{v}=(0,0)$ and $H(\vec{v}, 1)=i d_{X}$, exhibiting that $g \circ f \simeq i d_{X}$. We can visualize this as the continuous contraction of the space to the origin.

Intuitively, homotopy equivalence indicates that two spaces can be transformed into each other by bending, shrinking, and expanding. Homeomorphism implies homotopy equivalence, but not vice versa (the disk and the point are homotopy equivalent by shrinking along radial lines, but not homeomorphic since there is certainly no bijection).

Definition 4.15. X is contractible if it is homotopy equivalent to the space of one element. One can show this is equivalent to $\operatorname{id}_{X}: X \rightarrow X$ being null-homotopic.
Example 4.16. Let $X=\mathbb{R}^{2} \backslash\{(0,0)\}$ and $Y=S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. Note that $Y \subseteq X$. We want to show these are homotopy equivalent. Let

$$
\begin{array}{ll}
g: Y \rightarrow X, & g(\vec{v})=\vec{v} \\
f: X \rightarrow Y, & f(\vec{v})=\frac{\vec{v}}{\|\vec{v}\|} .
\end{array}
$$

Then $f \circ g=i d_{Y}$ and $(g \circ f)(\vec{v})=\frac{\vec{v}}{\|\vec{v}\|}$. We show the latter is homotopic to $i d_{X}$ via:

$$
H: X \times[0,1] \rightarrow X, \quad H(\vec{v}, t)=t \vec{v}+(1-t) \frac{\vec{v}}{\|\vec{v}\|}
$$

Then $H(\vec{v}, 0)=\frac{\vec{v}}{\|\vec{v}\|}$ and $H(\vec{v}, 1)=\vec{v}$.
Remark. Note that homotopy equivalence is weaker than homeomorphism. In this previous example, we saw the homotopy equivalence of a non-compact space and a compact space. What let this argument pass through is that in some sense, homotopy equivalence preserves the number of holes but not other topological properties.

4.3 The fundamental group

Definition 4.17. Let $x \in X$. A loop at b is a path $p:[0,1] \rightarrow X$ with $p(0)=p(1)=b$.
Remark. A Moore loop is a variant definition of a loop which attaches a domain $\mathbb{R} / n \mathbb{Z}$ to a loop. The necessary conclusions (e.g., the fundamental group) turn out to be equivalent.
Remark. We adopt the following convention: A homotopy of loops p, q at b has to fix the endpoints at b. Thus,

$$
H:[0,1] \times[0,1] \rightarrow X
$$

(the first $[0,1]$ represents the path, the second $[0,1]$ represents time), so that

$$
H(x, 0)=p(x), \quad H(x, 1)=q(x), \quad H(0, t)=H(1, t)=b .
$$

Definition 4.18. The fundamental group $\pi_{1}(X, \star)$ is the group produced by taking the set of loops at \star, modulo the equivalence relation of loop homotopy.

- The group operation is induced via loop concatenation:

$$
(p * q)(t)=\left\{\begin{array}{l}
p(2 t) \text { if } 0 \leq t \leq \frac{1}{2} \\
q(2 t-1) \text { if } \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

- This only gives e.g., associativity if we work modulo homotopy. One can check that

$$
(p * q) * r \simeq p *(q * r)
$$

explicitly, as desired.

- Our identity element is (the equivalence class) of the constant loop at \star, which we call c_{\star}. One can construct a homotopy $p * c_{\star} \simeq p$, for example.
- The inverse element p^{-1} of a loop p can be defined as $p^{-1}(t):=p(1-t)$. One can construct a homotopy whereby one traverses less and less of the path until it becomes the constant map [HW1, Q1].

If $[p$] denotes the equivalence class of p, then it turns out

$$
[p] \cdot[q]:=[p * q]
$$

is a well-defined group operation. That is, loop concatenation * gives a group operation up to homotopy.
Definition 4.19. Let $f: X \rightarrow Y$ where p is a loop at $\star \in X$. Then $f \circ p$ is a loop at $f(\star) \in Y$. In this way, f induces the induced homomorphism written

$$
f_{*}: \quad \pi_{1}(X, \star) \rightarrow \pi_{1}(Y, f(\star)), \quad[p] \mapsto[f \circ p] .
$$

Remark. See [HW1, Q6] where we check that the fundamental group and the induced homomorphism have the desired properties:
$1)$ is the assertion that $[p][q]=[p * q]$ is well-defined.
2) is the assertion that $f_{*}([p])=[f \circ p]$ is well defined.

3) is the assertion that f_{*} is a homomorphism (i.e., $\left.f_{*}([p][q])=f_{*}([p]) f_{*}[q]\right)$).
4) is the assertion that $f \simeq g$ implies $f_{*}=g_{*}$.

Corollary 4.20. The following hold from the property $f \simeq g$ implies $f_{*}=g_{*}$:

- If $f: X \rightarrow Y$ is a homotopy equivalence, then f_{*} is an isomorphism (i.e., bijective group homomorphism) [HW1, Q7]
- Homotopy-equivalent spaces have the same fundamental group.
- A contractible space has trivial fundamental group.

Example 4.21 (Fundamental group of S^{1}). We claim that

$$
\pi_{1}\left(S^{1},(1,0)\right) \cong \mathbb{Z}
$$

We sketch the proof visually: consider the real line coiled over S^{1}, such that \mathbb{Z} is the preimage of $(1,0)$. Following the loop along the real line, we end at one of these integers. If we class the loops based on which of \mathbb{Z} our loop ends up at, this turns out to construct an isomorphism between the homotopy classes of loops and \mathbb{Z}. See https://www.math. uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Dooley.pdf, which formalizes this via path lifting and covering spaces.

Example 4.22. The fundamental group is a functor

$$
\pi_{1}: \text { Top }{ }_{*} \rightarrow \text { Grp. }
$$

The morphisms are mapped via

$$
f:(X, x) \rightarrow(Y, y) \quad \mapsto \quad f_{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(Y, y)
$$

and composition is preserved since $(g \circ f)_{*}=g_{*} \circ f_{*}$.
Definition 4.23. The fundamental groupoid ΠX of a space X is the category whose objects are points in X, and whose morphisms are

$$
\Pi X(x, y)=\{\text { paths from } x \text { to } y\} /\{\text { homotopy }\} .
$$

This is a groupoid since the existence of return paths exhibits isomorphism. Note that $\Pi X(x, x)$ forms a group isomorphic to $\pi_{1}(X, x)$.

4.4 Applications

Remark. The following are Theorems 1.8 and 1.9 in Hatcher.
Theorem 4.24 (Fundamental theorem of algebra). A polynomial $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+$ $a_{1} z+a_{0}$ has a root in \mathbb{C} if $n \geq 1$.

Proof. • Suppose

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}
$$

has no roots. Define the family of functions

$$
f_{r}(s)=\frac{p\left(r e^{2 \pi i s}\right) / p(r)}{\left|p\left(r e^{2 \pi i s}\right) / p(r)\right|}
$$

where $r \geq 0$.

- Then $\left|f_{r}(s)\right|=1$ (the function is well-defined everywhere, and no denominator is zero by hypothesis) and $f_{r}(0)=f_{r}(1)=1$, making f_{r} a loop in $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ based at $1 \in \mathbb{C}$.
- We claim that $\left[f_{0}\right]=\left[f_{r}\right]=0 \in \pi_{1}\left(S^{1}, 1\right)$: First note that $f_{0}(s)=1$, i.e., the constant function (equivalently, view f_{0} as the constant loop at 1). Then $\left[f_{0}\right]=\left[f_{r}\right]$ with the homotopy exhibited by f_{r} varying from 0 to r (continuous since composition of continuous functions like multiplication, norm, non-zero division, etc.). That is, every f_{r} is homotopic to the trivial loop.
- Now, define

$$
p_{t}(z)=z^{n}+t\left(a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}\right)
$$

and note that $p_{0}(z)=z^{n}$ and $p_{1}(z)=p(z)$, exhibiting a homotopy $z^{n} \simeq p(z)$. By the reverse triangle inequality:

$$
\left|p_{t}(z)\right| \geq|z|^{n}-\left|t\left(a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}\right)\right|
$$

- For $|z|=r$ sufficiently large $\left(r \geq \max \left\{\left|a_{n-1}\right|+\cdots+\left|a_{0}\right|, 1\right\}\right)$, we have the inequality

$$
|z|^{n}=r \cdot r^{n-1} \geq\left(\left|a_{n-1}\right|+\cdots+\left|a_{0}\right|\right)|z|^{n-1} \geq\left|a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}\right|
$$

(the last inequality holds since $|z|=r \geq 1$). Then for $t \in[0,1]$, we have $\left|p_{t}(z)\right|>0$ when $|z|=r$.

- Since $p_{t}(z) \neq 0$ if $|z|=r$ for all $t \in[0,1]$, we fix this r which allows us take the following homotopy (no divisions by zero anywhere)

$$
\begin{aligned}
& \Longrightarrow \frac{p_{0}\left(r e^{2 \pi i s}\right) / p_{0}(r)}{\left|p_{0}\left(r e^{2 \pi i s}\right) / p_{0}(r)\right|} \simeq \frac{p_{1}\left(r e^{2 \pi i s}\right) / p_{1}(r)}{\left|p_{1}\left(r e^{2 \pi i s}\right) / p_{1}(r)\right|}=\frac{p\left(r e^{2 \pi i s}\right) / p(r)}{\left|p\left(r e^{2 \pi i s}\right) / p(r)\right|} \\
& \Longrightarrow e^{2 \pi i n s} \simeq f_{r}(s) .
\end{aligned}
$$

- The left-hand side as a function of s corresponds to the class $n \in \pi_{1}\left(S^{1}, 1\right)$. But we saw that $\left[f_{r}\right]=\left[f_{0}\right]=\in \pi_{1}\left(S^{1}, 1\right)$. Our polynomial is not constant, so $n \neq 0$, a contradiction.

Theorem 4.25 (Brouwer's fixed point theorem). Let

$$
\begin{aligned}
D^{n} & =\left\{\vec{v} \in \mathbb{R}^{n} \mid\|\vec{v}\| \leq 1\right\} \\
S^{n-1} & =\left\{\vec{v} \in \mathbb{R}^{n} \mid\|\vec{v}\|=1\right\}
\end{aligned}
$$

and take $f: D^{n} \rightarrow D^{n}$ continuous. Then there exists $v \in D^{n}$ such that $f(v)=v$, i.e., a fixed point.

Proof. We complete the $n=2$ case. Assume f does not fix a point.

- Define $g: D^{2} \rightarrow S^{1}$ such that the g goes to the intersection of the ray $\overrightarrow{f(\vec{v}) \vec{v}}$ with S^{1} (this is well-defined since $f(\vec{v}) \neq \vec{v}$ everywhere). Observe that g is continuous (informally, f is continuous and so the ray produced would vary continuously with \vec{v}).
- If $\vec{v} \in S^{1}$, we have $g(\vec{v})=\vec{v}$. If ι denotes inclusion, then we have

$$
S^{1} \xrightarrow{\iota} D^{2} \xrightarrow{g} S^{1}
$$

where $g \circ i=\mathrm{id}_{S^{1}}$.

- Passing to fundamental groups, we get

$$
\pi_{1}\left(S^{1}\right) \xrightarrow{\iota_{*}} \pi_{1}\left(D^{2}\right) \xrightarrow{g_{*}} \pi_{1}\left(S^{1}\right) .
$$

Since $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$ and $\pi_{1}\left(D^{2}\right) \cong 0$ (by contractibility, see [HW1, Q4]), then $(g \circ i)_{*}=$ $\left(\mathrm{id}_{\mathcal{S}^{1}}\right)_{*}=i d_{\mathbb{Z}}$, but that is impossible since it must factor through the trivial group $\pi_{1}\left(D^{2}\right)$. This is a contradiction.

For the cases $n>2$, one uses π_{n} or the homology groups (see [Hatcher, Corollary 2.11]).

Exercise 4.26. Prove the case $n=1$ using the intermediate value theorem.
Proof. We want $f: D^{1}=[0,1] \rightarrow D^{1}=[0,1]$ continuous. Suppose we have no fixed point; then $g(t):=f(t)-t \neq 0$ on our domain. $g(0)=f(0)>0$ and $g(1)=f(1)-1<0$. By the intermediate value theorem, there is some value $t \in[0,1]$ for which $g(t)=0$, a contradiction. (For a visual picture, draw the graphs of $\operatorname{id}_{[0,1]}$ and an arbitrary f, and note that they always intersect.)

4.5 [TODO] Van Kampen's theorem

Remark. (TODO: A brief shoutout to Van Kampen's theorem for fundamental groups, plus an example of a pushout: http://www.math.toronto.edu/mat1300/vankampen. pdf, or Hatcher)

5 Higher homotopy groups

5.1 Mapping spaces

Remark. The unbased mapping space properties described below are covered in [2.2]. The conditions from which we get the adjunction relation are given by Hatcher.

Definition 5.1. The mapping space of X, Y is the topological space

$$
\operatorname{Map}(X, Y)=Y^{X}=\{\text { continuous functions } X \rightarrow Y\}
$$

with the compact-open topology: for every pair of compact sets $C \subseteq X$ and open sets $U \subseteq Y$, let $W(C, U)$ be the set of functions f with $f(C) \subseteq U$, then take the topology for which the set of all $W(C, U)$ is a subbasis.
Remark. If X is compact and Y has a metric, then Y^{X} has a metric

$$
d(f, g)=\sup _{x \in X} d(f(x), g(x))
$$

which induces the same topology as the compact-open topology.
Example 5.2. Let X, Y, Z be spaces, with Y locally compact. Then

$$
\operatorname{Map}(X \times Y, Z)=Z^{X \times Y} \cong\left(Z^{Y}\right)^{X}=\operatorname{Map}(X, \operatorname{Map}(Y, Z))
$$

a homeomorphism. The elements of these spaces look like

$$
f: X \times Y \rightarrow Z, \quad g: X \rightarrow Z^{Y} .
$$

The idea is that for every $x \in X$ fed into f, one induces a function $Y \rightarrow Z$. Thus g is a function from this x to the functions $Y \rightarrow Z$. The bijective correspondence is observable by noting that each can be defined in terms of the other:

$$
(x, y) \mapsto(g(x))(y) \quad \leftrightarrow \quad x \mapsto(y \mapsto f(x, y)) .
$$

This holds unconditionally if we were considering arbitrary functions. However, we now work on the mapping spaces with compact-open topologies. It turns out that Y's local compactness is strong enough to ensure that f is continuous if and only if g is continuous, and that the compact-open topology allows for a bijection that is a homeomorphism.

Remark. This parallels the tensor-hom adjunction, in the sense that

$$
-\times Y: \text { Top } \rightarrow \text { Top, } \quad \operatorname{Map}(Y,-): \text { Top } \rightarrow \text { Top }
$$

are an adjoint pair of functors for Y locally compact. The parallel is more appropriate if we did not have to make such a specific restriction; instead, if we restricted X, Y, Z to be objects in the category CGWH of compactly-generated weak Hausdorff spaces (see [Concise, §5] and http://neil-strickland.staff.shef.ac.uk/courses/homotopy/cgwh.pdf), then the bijection holds without restriction (as in the case of tensor-hom).

Definition 5.3. The based mapping space of $\left(X, \star_{x}\right),\left(Y, \star_{y}\right)$ is

$$
\operatorname{Map}_{\star}\left(\left(X, \star_{x}\right),\left(Y, \star_{y}\right)\right)=\left\{\text { continuous functions } X \rightarrow Y \text { mapping } \star_{x} \text { to } \star_{y}\right\} .
$$

equipped with the compact-open topology.
Example 5.4. Analogous to (unbased) mapping spaces, under the compact-open topology and the constraint that Y is locally compact, one gets the homeomorphism

$$
\left.\operatorname{Map}_{\star}\left((X \wedge Y, \star),\left(Z, \star_{z}\right)\right)\right) \cong \operatorname{Map}_{\star}\left(\left(X, \star_{x}\right), \operatorname{Map}_{\star}\left(\left(Y, \star_{y}\right),\left(Z, \star_{z}\right)\right)\right)
$$

where \wedge denotes the smash product defined below.
Remark. As with the unbased case, we can abandon the constraint of Y being locally compact if X, Y, Z live in a nice category like CGWH $_{*}$. More formally, \wedge makes CGWH ${ }_{*}$ a closed symmetric monoidal category (see the section on adjoint functors).

5.2 Operations on pointed spaces

Remark. The following is a synthesis of part of Chapter 0 in Hatcher, along with the readings and the class' content.

Notation 5.5. When the existence of a basepoint is obvious and necessary, we might simply write X to denote the pointed space $\left(X, \star_{x}\right)$.

Definition 5.6. The wedge product, written $X \vee Y$, of two pointed spaces $\left(X, \star_{x}\right)$ and $\left(Y, \star_{y}\right)$ is the quotient of the disjoint union $X \sqcup Y$ given by identifying $\star_{x} \sim \star_{y}$ (this is necessary since working with basepoints isn't canonical for disjoint unions).

Example 5.7. The wedge product $X \vee Y$ is the pushout in the following diagram:

Definition 5.8. The smash product, written $X \wedge Y$, of two pointed spaces $\left(X, \star_{x}\right)$ and $\left(Y, \star_{y}\right)$ is the quotient of the product space $X \times Y$ given by identifying $\left(x, \star_{y}\right) \sim\left(\star_{x}, y\right)$ for all x, y. These are copies of X and Y that only intersect at ($\left.\star_{x}, \star_{y}\right)$. More precisely,

$$
X \wedge Y:=(X \times Y) /(X \vee Y) .
$$

Example 5.9. $S^{1} \times S^{1}$ is the 2-torus, but $S^{1} \wedge S^{1}=S^{2}$. In general, $S^{m} \wedge S^{n} \cong S^{m+n}$. A nice way to visualize this is to consider the torus as a square with its opposite sides identified. These sides form two circles intersecting at a point, a copy of $S^{1} \vee S^{1}$. When they are identified to be one point (that is, $\left(S^{1} \times S^{1}\right) /\left(S^{1} \vee S^{1}\right)$, the square becomes the sphere S^{2}.

Example 5.10. We saw earlier that the smash product gave a homeomorphism of based mapping spaces, analogous to the tensor product and the tensor-hom adjunction. Similarly, the smash product satisfies the universal property that every map from $\left(X, \star_{x}\right) \times$ $\left(Y, \star_{y}\right)$ that preserve basepoints separately in each variable factors through the smash product:

(see http://mathoverflow.net/a/ 105833).
Definition 5.11. Given a non-pointed space X, the suspension $S X$ is the quotient of $X \times I$ where $X \times\{0\}$ is collapsed to one point and $X \times\{1\}$ is collapsed to another.

Example 5.12. The motivating example is $X=S^{1}$. Then $S X$ can be viewed as a doublepointed cone with base X, from which we see that $S\left(S^{1}\right)=S^{2}$ with the two "suspension points" as $(0,0, \pm 1)$. This argument generalizes in the obvious way for $X=S^{n}$.

Remark. For continuous $f: X \rightarrow Y$, we can define $S f: S X \rightarrow S Y$ to be $S f([x, t])=[f(x), t]$ (the brackets indicate that we are working modulo equivalence). Then we have the suspension functor

$$
S: \text { Top } \rightarrow \text { Top }
$$

which roughly increases the dimension of a space by one.
Definition 5.13. Given a pointed space $\left(X, \star_{x}\right)$, the reduced suspension is given by

$$
\Sigma X:=(X \times I) /\left(X \times\{0\} \cup X \times\{1\} \cup\left\{\star_{x}\right\} \times I\right),
$$

or equivalently, $S X$ with the line joining the two suspension points also identified. The identification is done to ensure there is a canonical basepoint, namely the equivalence class of all the identified points.
Remark. Likewise we have the reduced suspension functor

$$
\Sigma: \mathbf{T o p}_{*} \rightarrow \mathbf{T o p}_{*}
$$

which roughly increases the dimension of a pointed space by one.
Proposition 5.14. $\Sigma X \cong X \wedge S^{1}$
Proof. Briefly: taking $X \times I$ and then identifying $(x, 0) \sim(x, 1)$ gives you $X \times S^{1}$. The further identification of $X \times\{0\}=X \times\{1\}$ is like collapsing along X, and the further identification of $\left\{\star_{X}\right\} \times I$ is like collapsing along S^{1}. This gives you

$$
\begin{aligned}
& ((X \times I) /(x, 0) \sim(x, 1)) /\left(X \times\{0\} \cup\left\{\star_{x}\right\} \times I\right) \\
& \cong\left(X \times S^{1}\right) /\left(X \times\{0\} \cup\left\{\star_{x}\right\} \times I\right) \\
& \cong\left(X \times S^{1}\right) /\left(X \vee S^{1}\right),
\end{aligned}
$$

which is just $X \wedge S^{1}$.
Definition 5.15. Given a pointed space $\left(X, \star_{x}\right)$, its loop space is given by

$$
\Omega X:=\operatorname{Map}_{\star}\left(S^{1}, X\right),
$$

that is, the based mapping space of maps from S^{1} to X. This gives the loop functor on pointed spaces, whereby for $f: X \rightarrow Y$ we take $\Omega f: \operatorname{Map}_{\star}\left(S^{1}, X\right) \rightarrow \operatorname{Map}_{\star}\left(S^{1}, Y\right)$ to be (post-)composition with f.

Proposition 5.16.

$$
\begin{aligned}
\operatorname{Map}_{\star}(\Sigma X, Y) & \cong \operatorname{Map}_{\star}(X, \Omega Y) \\
\operatorname{Map}_{\star}\left(X \wedge I_{\star}, Y\right) & \cong \operatorname{Map}_{\star}\left(I_{\star}, \operatorname{Map}_{\star}(X, Y)\right) .
\end{aligned}
$$

Proof. Both follow from the adjunction property for based mapping spaces that we saw in the previous section, along with the definitions of Σ, Ω and the symmetric nature of the smash product.

Example 5.17. We conclude that $\Sigma:$ Top $_{*} \rightarrow$ Top $_{*}$ is a left adjoint to the functor Ω : Top $*$ Top $*$.

5.3 Higher homotopy groups

Our observations regarding based mapping spaces and associated operations on pointed spaces (the wedge and smash product, along with loop and reduced suspension spaces) let us define the homotopy groups in full generality.

Definition 5.18. The based mapping space up to homotopy for based maps $X \rightarrow Y$ is denoted $[X, Y]$ and given by $\operatorname{Map}_{\star}(X, Y)$ modulo homotopy equivalence.

Definition 5.19. The n-th homotopy group is defined by

$$
\pi_{n}(X):=\left[S^{n}, X\right] .
$$

This generalizes the definition of $\pi_{1}(X)$ as based loops up to homotopy.
Proposition 5.20. Every higher homotopy group is the fundamental group of some space; namely

$$
\pi_{n}(X)=\pi_{1}\left(\Omega^{n-1} X\right)
$$

Proof. Note that

$$
\operatorname{Map}_{\star}\left(S^{n}, X\right) \cong \operatorname{Map}_{\star}\left(S^{1} \wedge S^{n-1}, X\right) \cong \operatorname{Map}_{\star}\left(S^{1}, \operatorname{Map}_{\star}\left(S^{n-1}, X\right)\right)
$$

where we use our based mapping homeomorphism and the smash product of spheres. Taking our mapping spaces modulo homotopy gives

$$
\pi_{n}(X) \cong \pi_{1}\left(\Omega^{n-1} X\right)
$$

in a canonical way (the homeomorphism is induced from the based mapping homeomorphism, which expresses a pair of adjoint functors).

Remark. It follows that the higher homotopy groups are also functors

$$
\pi_{n}: \text { Top }_{*} \rightarrow \mathbf{G r p}
$$

being compositions of the functors Ω and π_{1}.
Proposition 5.21. π_{n} is an abelian group for $n \geq 2$.

Proof. • In a nice category of spaces (e.g., CGWH), one can show that ΩX is something known as an H-space, also known as a topological unital magma. The result that the fundamental group of a topological group is abelian generalizes to H-spaces, and since $\pi_{n}(X)=\pi_{1}\left(\Omega^{n-1} X\right)$ we have the result.

- Without assuming a nice category, note that it suffices to consider $n=2\left(\right.$ since $\pi_{n}(X)=$ $\pi_{2}\left(\Omega^{n-2}(X)\right)$). It suffices to consider $n=2$ (since $\pi_{n}(X)=\pi_{2}\left(\Omega^{n-2}(X)\right)$). Homotopy classes of maps $S^{2} \rightarrow X$ are equivalent to classes of maps $I^{2} \rightarrow X$ that take the boundary to the basepoint. The essential idea is that a concatenation $f * g: I^{2} \rightarrow X$ can be deformed via the extra dimension into $g * f: I^{2} \rightarrow X$ (see http://math. stackexchange. com/a/161519).

Example 5.22. For the n-sphere S^{n}, we have

$$
\pi_{q}\left(S^{n}\right)=0 \text { for } q<n, \quad \pi_{n}\left(S^{n}\right)=\mathbb{Z} .
$$

The last statement is not easy to prove, and is most immediately viewed as a consequence of a result known as the Hurewicz theorem. There are also:

$$
\begin{aligned}
\pi_{4 n-1}\left(S^{2 n}\right) & =\mathbb{Z} \oplus \text { finite } \\
\pi_{q}\left(S^{n}\right) & =\text { is finite otherwise and non-zero for infinitely many } q>n, n \geq 2 .
\end{aligned}
$$

Definition 5.23. Let $f: X \rightarrow Y$. This induces $f_{*}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ (think $S^{n} \rightarrow X \rightarrow Y$ where the second map is f). We say that f is a weak homotopy equivalence if f_{*} is an isomorphism for all $n \geq 0$.

Proposition 5.24. Homotopy equivalence implies weak homotopy equivalence.
Proof. Suppose $X \simeq Y$ via maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$. For $n=0$, note that homotopy equivalence preserves the number of path-connected components. For $n \geq 1$, since $f \circ g \simeq$ id_{X}, we have $g_{*} \circ f_{*}=(g \circ f)_{*}=\operatorname{id}_{X *}$, we conclude that f_{*} is an isomorphism of groups.

Remark. For "nice spaces" like CW-complexes, the converse is true. Furthermore, non-nice-spaces are weak homotopy equivalent to nice spaces.

Homotopy groups are more sophisticated invariants than the homology groups and thus better at distinguishing spaces. However, they are hard, if not impossible, to compute. Meanwhile, homology groups will turn out to be independent of the decomposition we choose for turning a space into a simplicial complex.

6 Simplicial complexes

Remark. This is a synthesis of Section 4 of May's Finite Spaces book, Munkres' Elements of Algebraic Topology, and things mentioned in class.

Ultimately we want to associate algebraic objects to arbitrary spaces. We start by considering spaces that are homeomorphic to a net of edges, triangles, tetrahedra, etc. (e.g., polyhedra). Many spaces (e.g., the torus) can be viewed in this way, leading to the notion of simplicial complexes.

6.1 Simplicial complexes

Definition 6.1. A set of points $\left\{v_{0}, \ldots, v_{n}\right\}$ is geometrically independent if the vectors $\left\{v_{i}-v_{0}\right\}$ are linearly independent. One verifies that this is equivalent to the requirement that

$$
\sum_{i=0}^{n} t_{i}=0 \text { and } \sum_{i=0}^{n} t_{i} v_{i}=0 \Longrightarrow t_{0}=t_{1}=\cdots=t_{n}=0
$$

Definition 6.2. The n-simplex σ spanned by a geometrically independent set $\left\{v_{0}, \ldots, v_{n}\right\}$ is the convex hull of the points, i.e.,

$$
\sigma=\left\{\sum_{i=0}^{n} t_{i} v_{i} \mid \sum_{i=0}^{n} t_{i}=1 \text { and } t_{i} \geq 0 \text { for all } i\right\} .
$$

Simplices spanned by a subset of $\left\{v_{0}, \ldots, v_{n}\right\}$ are faces of σ. The set $\left\{v_{0}, \ldots, v_{n}\right\}$ is the vertex set of σ. The dimension of σ is n.

Definition 6.3. A (geometric) simplicial complex K is a collection of simplices in \mathbb{R}^{N} where:

- Every face of a simplex in K is also a simplex in K
- The intersection of two simplices in K is also a simplex in K

The vertices $V(K)$ of a simplicial complex is the union of its simplices' vertex sets; i.e., it is the set of 1 -simplices in K.

Example 6.4. The hollow tetrahedron with points at $(0,0,0),(1,0,0),(0,1,0),(0,0,1)$ is a simplicial complex. The simplices are every proper, non-empty subset of these four points. The four points are geometrically independent (for example, take $v_{0}=(0,0,0)$) and thus all the subsets define simplices. Closure under taking faces and intersections is immediate.

Definition 6.5. A map of simplicial complexes $f: K \rightarrow L$ is a map $V(K) \rightarrow V(L)$ where $f(\sigma)$ is a simplex in L for all simplices $\sigma \in K$.

Definition 6.6. The n-skeleton K^{n} of a simplicial complex is the simplicial complex determined by K_{0}, \ldots, K_{n}, i.e., K^{\prime} 's simplices of dimension up to n.

Definition 6.7. The geometric realization $|K|$ of a simplicial complex K is the topological space where:

- The underlying set is the union of the simplices of K
- The topology is that $V \subseteq|K|$ is closed exactly when $V \cap \sigma$ is closed in σ 's subspace topology, for all $\sigma \in K$.

Remark. It turns out that if K is a finite collection of simplices, the subspace topology of $|K|$ as a subset of \mathbb{R}^{N} is exactly the same as the topology defined above. See [Munkres, $\S 2$] to see that $|K|$'s topology is finer than the subspace topology in general.

Definition 6.8. The category of simplicial complexes, SCxs has geometric simplicial complexes as its objects and maps of simplicial complexes as its morphisms.

Definition 6.9. The geometric realization functor

$$
|\cdots|: \text { SCxs } \rightarrow \text { Top }
$$

takes simplicial complexes to their geometric realizations, and a map $g: K \rightarrow L$ of simplicial complexes to the continuous map

$$
|g|:|K| \rightarrow|L|, \quad \sum t_{i} v_{i} \mapsto \sum t_{i} g\left(v_{i}\right) .
$$

6.2 Abstract simplicial complexes

Definition 6.10. An abstract simplicial complex X is comprised of the following data:

- A set X_{0} whose elements we call vertices,
- Sets X_{n} of $(n+1)$-element subsets of X_{0}, whose elements we call n-simplices.

The sets of n-simplices are subject to the requirement that every $(k+1)$-subset of the vertices (a face) of an n-simplex (an element of X_{n}) is also a k-simplex (an element of X_{k})

Proposition 6.11. Every simplicial complex K determines an abstract simplicial complex aK.
Proof. Take the vertices of K as X_{0}, and take each X_{n} to be the collection of $(n+1)$-element subsets of K that determine n-simplices. The requirement of subsets being abstract simplices is satisfied by the corresponding requirement on simplicial complexes that faces are also simplexes.

Example 6.12. Consider an octahedron in \mathbb{R}^{3} with only the top four faces filled in. Numbering the vertices from top to bottom and passing to its abstract simplicial complex, we have:

$$
\begin{aligned}
X_{0}= & \left\{x_{1}, \ldots, x_{6}\right\} \\
X_{1}= & \left\{\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{1}, x_{4}\right\},\left\{x_{1}, x_{5}\right\},\right. \\
& \left\{x_{2}, x_{3}\right\},\left\{x_{3}, x_{4}\right\},\left\{x_{4}, x_{5}\right\},\left\{x_{5}, x_{2}\right\}, \\
& \left.\left\{x_{2}, x_{6}\right\},\left\{x_{3}, x_{6}\right\},\left\{x_{4}, x_{6}\right\},\left\{x_{5}, x_{6}\right\}\right\} \\
X_{2}= & \left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{1}, x_{3}, x_{4}\right\},\left\{x_{1}, x_{4}, x_{5}\right\},\left\{x_{1}, x_{5}, x_{2}\right\}\right\} .
\end{aligned}
$$

In this way we can see intuitive geometric relations encoded abstractly as subsets of the vertex set.

Remark. In the case of finitely many simplices, one can go in reverse. That is, one can pass from an abstract simplicial complex K to a simplicial complex $g K$ by bijecting from X_{0} to any geometrically independent subset of some \mathbb{R}^{N} (this induces a bijection on each X_{n}). Then $a g K$ is isomorphic to K in the sense of abstract simplicial complexes (there is a bijection that preserves the relations between each's simplex sets X_{i}).

Definition 6.13. A map of abstract simplicial complexes $f: K \rightarrow L$ is a map $K_{0} \rightarrow L_{0}$ where $f(\sigma)$ is a simplex in L for all simplices $\sigma \in K$ (i.e., σ is a subset of K_{0} and thus $f(\sigma)$ is induced by the map on K_{0}; it should be an element of some L_{i}).

Definition 6.14. The category of abstract simplicial complexes, AbsSCxs has abstract simplicial complexes as its objects and maps of abstract simplicial complexes as its morphisms.

6.3 Ordered simplicial complexes

Definition 6.15. We have the following types of binary relations on a set S (i.e., subsets of $S \times S$):

- A preorder is a binary relation that is transitive and reflexive.
- A partial order is a preorder that is antisymmetric ($x \leq y$ and $y \leq x$ implies $x=y$).
- A total order is a partial order that is total (for all x, y, at least one of $x \leq y$ or $y \leq x$ must hold).

Definition 6.16. The category of posets, Posets, has sets equipped with partial orders (called posets) as its objects, and set maps satisfying

$$
a \leq b \Longrightarrow f(a) \leq f(b)
$$

(called order-preserving maps) as its morphisms.

Definition 6.17. An ordered simplicial complex is an abstract simplicial complex equipped with a partial ordering on X_{0} that restricts to a total order on each simplex. One can now write n-simplices (x_{0}, \ldots, x_{n}) as having a total order $x_{0} \leq \cdots \leq x_{n}$

Example 6.18. Consider the simplicial complex (of 0 and 1 -simplices) given by the tree structure of PhD advisors and advisees. There is a natural partial ordering on the vertices as induced by the tree hierarchy. This ordering restricts to a total order on each of the 1 -simplices (namely, advisor \geq advisee).

Definition 6.19. The category of ordered simplicial complexes, OrdSCxs has ordered simplicial complexes as its objects and maps of abstract simplicial complexes that are order-preserving on the poset of vertices.

Example 6.20. There is a forgetful functor

$$
\text { OrdSCxs } \rightarrow \text { AbsSCxs }
$$

which "forgets" the partial ordering. For example, the two ordered simplicial complexes with simplices

$$
\begin{aligned}
& X_{0}=\{a, b, c\}, \\
& X_{1}=\{a, b\},\{b, c\},\{a, c\} \\
& X_{2}=\{\{a, b, c\}\}
\end{aligned}
$$

and orderings $a<b<c$ and $c<b<a$ respectively (the strict $<$ simply indicates that a, b, c are in fact distinct), are the same object as abstract simplicial complexes.

Example 6.21. There is a functor

$$
\mathcal{K}: \text { Posets } \rightarrow \text { OrdSCxs }
$$

which takes the poset as the underlying poset for the ordered simplicial complex, and then takes all finite totally ordered subsets of the poset as simplices. Intuitively, \mathcal{K} takes the "maximal" set of simplices described by the partial order.

6.4 Simplicial approximation

Definition 6.22. Let X be a topological space and K a simplicial complex. Continuous maps $f, g: X \rightarrow|K|$ are simplicially close if for all $x \in X$ we have $f(x), g(x)$ are both in the closure of some simplex $\sigma_{x} \subseteq|L|$.

Proposition 6.23. If f, g are simplicially close, then $f \simeq g$.

Proof. Take the homotopy

$$
h: X \times I \rightarrow|K| \subseteq \mathbb{R}^{N}, \quad h(x, t)=t f(x)+(1-t) g(x)
$$

By simplicial closeness, $f(x), g(x)$ lie in the closure of some simplex σ_{x}. By convexity, $h(x, t)$ is contained in σ_{x} which ensures continuity. (In the finite case, we can also observe $|K|$ has the subspace topology in \mathbb{R}^{N}.)

Definition 6.24. A subdivision L of a simplicial complex K, written $L \subseteq K$, is where every simplex of L is contained in a simplex of K, and every simplex of K is a finite union of simplices of L. It follows that $|L|=|K|$.

Definition 6.25. The barycenter b_{σ} of a geometric simplex σ is given by $b_{\sigma}=\frac{1}{n+1} \sum_{0}^{n}\left(v_{i}\right)$. One constructs the barycentric subdivision K^{\prime} of a simplicial complex K as the union $K=\bigcup L_{n}$, where the L_{n} are defined as follows, starting with $L_{0}=K^{0}$:

- Let L_{n-1} be a subdivision of the $(n-1)$-skeleton K^{n-1}.
- For a n-simplex σ in K, take its boundary. This corresponds to an ordered subcomplex L_{σ} of L_{n-1}.
- We define

$$
L_{n}=L_{n-1} \cup \bigcup_{\sigma \in K_{n}} b_{\sigma} * L_{\sigma}
$$

where the $*$ is the cone operation, where for every simplex τ in L_{σ} we add an additional simplex $\tau \cup\left\{b_{\sigma}\right\}$.

In this way we get an ordered simplicial complex with vertices $\left\{b_{\sigma}\right\}$, where the ordering is given by $b_{\sigma} \leq b_{\tau}$ if $\sigma \subseteq \tau$.

Definition 6.26. The barycentric subdivision procedure gives the functor

$$
\mathcal{X}: \text { AbsSCxs } \rightarrow \text { Posets }
$$

where K goes to the set of barycenters $\left\{b_{\sigma}\right\}$ with the partial order described above. The ordered simplicial complex K^{\prime} is thus the result of the composition

$$
\mathcal{K} \mathcal{X}: \text { AbsSCxs } \rightarrow \text { OrdSCxs. }
$$

Example 6.27. To summarize, we have

where the triangle does not commute; following the arrows around from AbsSCxs will take you from a simplicial complex K to its barycentric subdivision K^{\prime} (with the ordering forgotten).

Example 6.28. Consider a triangle K (as a simplicial complex). Constructing the barycentric subdivision proceeds as follows:

- We start with three points (the vertices) $L_{0}=\left\{b_{0}, b_{1}, b_{2}\right\}$.
- For the original 1-simplices $\left\{b_{i}, b_{j}\right\}$, we take the barycenter (the midpoint), place a vertex $b_{i j}$ there, and thus get L_{1} by adding simplices $\left\{b_{i}, b_{i j}\right\},\left\{b_{i j}, b_{j}\right\}$. Hence

$$
L_{1}=\left\{b_{0}, b_{1}, b_{2},\left\{b_{0}, b_{01}\right\},\left\{b_{01}, b_{1}\right\},\left\{b_{0}, b_{02}\right\},\left\{b_{02}, b_{2}\right\},\left\{b_{1}, b_{12}\right\},\left\{b_{12}, b_{2}\right\}\right\}
$$

- For the original 2-simplex $\left\{b_{0}, b_{1}, b_{2}\right\}$, we take its barycenter (the centroid), place a vertex b_{012} there, which induces the creation of 6 new triangles (and associated edges) via the cone operation $b_{012} * L_{1}$ (since the boundary of the original 2 -simplex gives $L_{1} \subseteq L_{1}$ itself).

We are done after the 2-simplex, so $K^{\prime}=L_{2}=L_{1} \cup\left(b_{012} * L_{1}\right)$. The barycentric subdivision K^{\prime} has the natural partial ordering given by $b_{012} \geq b_{01}, b_{12}, b_{02}$ and $b_{i j} \geq b_{i}, b_{j}$. One can see that this partial order restricts to a total order on each simplex K^{\prime}.

Definition 6.29. The n-th barycentric subdivision, $K^{(n)}$ of K is given by repeated barycentric subdivision; i.e., $K^{(1)}=K^{\prime}$ and $K^{(i)}=\left(K^{(i-1)}\right)^{\prime}$.

Theorem 6.30 (Simplicial approximation theorem). For a continuous map $f:|K| \rightarrow|L|$ where K and L are simplicial complexes, there exists a number n and a simplicial map g : $K^{(n)} \rightarrow L$ such that $|g| \simeq f$.

Proof. Not too difficult, but our entire treatment has been too informal to support it. See [Finite Book, §4].

The point is that if you have any continuous map between two spaces that are geometric realizations of (possibly infinite) simplicial complexes, the map is homotopic to a simplicial map (albeit now from a more complicated complex $K^{(n)}$). Simplicial maps are nice and piecewise, and we can now approximate many continuous maps with them.
Remark. Historically, the foundations of algebraic topology were established using simplicial complexes. Once we encounter CW complexes however, we will see that that they are an even more natural setting, especially for homotopy theory and its generalizations (due to Quillen; see Riehl's Categorical Homotopy Theory).

7 Chain complexes and simplicial homology

Remark. This section is based on Chapter 12 of Concise, from class, etc.

7.1 Simplicial chain complexes

Definition 7.1. A chain complex $\left(M_{*}, \partial_{*}\right)$ over R is a sequence of R-modules M_{i}

$$
\cdots \xrightarrow{\partial_{i+2}} M_{i+1} \xrightarrow{\partial_{i+1}} M_{i} \xrightarrow{\partial_{i}} M_{i-1} \xrightarrow{\partial_{i-1}} \cdots
$$

connected by boundary operators $\partial_{i}: M_{i} \rightarrow M_{i-1}$, which are homomorphisms that satisfy $\partial_{i} \circ \partial_{i+1}=0$ for all i.

Notation 7.2. When indices are obvious, one might drop the indices. For example, the requirement on boundary operators is often simply expressed as $\partial^{2}=0$.

Example 7.3. The chain complex $C_{*}(K)$ induced by an ordered simplicial complex K is a chain complex over \mathbb{Z}, given by the sequence of free abelian groups on the n-simplices of K, i.e.,

$$
C_{n}(K)=\left\{\sum a_{j} \sigma_{j} \mid a_{j} \in \mathbb{Z}, \sigma_{j} \text { is an } n \text {-simplex of } K\right\},
$$

where the boundary maps are given by

$$
\partial(\sigma)=\partial\left(\left[x_{0}, \ldots, x_{n}\right]\right)=\sum_{i=0}^{n}(-1)^{i}\left[x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right]
$$

(where \hat{x}_{i} means to remove the i-th component). One can verify that $\partial_{i} \circ \partial_{i+1}=0$.
Example 7.4. Let K_{n} denote the set of n-simplices of K. Then in the chain complex $C_{*}(K)$, we have $C_{n}(K)=\mathbb{Z}\left[K_{n}\right]$. We can think of C_{n} as the n-th chain complex functor

$$
C_{n}: \mathbf{A b s S C x s} \rightarrow \mathbf{A b}, \quad K \mapsto \mathbb{Z}\left[K_{n}\right]
$$

where the morphisms are transformed from $f: S \rightarrow T$ with

$$
C_{n} f: \mathbb{Z}\left[S_{n}\right] \rightarrow \mathbb{Z}\left[T_{n}\right], \quad C_{n} f\left(\sum a_{i} s_{i}\right)=\sum a_{i} f\left(s_{i}\right) .
$$

7.2 Simplicial homology groups

Definition 7.5. The n-th homology group of a chain complex is given by

$$
H_{n}:=\operatorname{ker}\left(\partial_{n}\right) / \operatorname{im}\left(\partial_{n+1}\right)
$$

Definition 7.6. The n-th simplicial homology group (over $\mathbb{Z})$ of K, written $H_{n}(K ; \mathbb{Z})$, is the n-th homology group of the induced chain complex $C_{*}(K)$.

Example 7.7. The n-th simplicial homology group is a functor

$$
H_{n}: \text { OrdSCxs } \rightarrow \mathbf{A b} .
$$

When we develop singular homology, we will see that this H_{n} factors through a functor $\mathbf{T o p} \rightarrow \mathbf{A b}$.
Exercise 7.8. Consider the standard n-simplex Δ_{n}^{s}. Compute that $H_{*}\left(\Delta_{n}^{s}\right)=H_{0}\left(\Delta_{n}^{s}\right) \cong \mathbb{Z}$.
Exercise 7.9. $H_{q}\left(\partial \Delta_{n}^{s} ; \mathbb{Z}\right)$ is isomorphic to \mathbb{Z} at $q=0$ and $q=n-1$, and is 0 elsewise.
Notation 7.10. One sometimes writes $Z_{n}:=\operatorname{ker}\left(\partial_{n}\right)$ for the set of cycles and write $B_{n}:=$ $\operatorname{im}\left(\partial_{n+1}\right)$ for the set of boundaries. This leads to the phrase that "homology is cycles mod boundaries." The terminology is inspired by the geometric intuition given by simplicial homology.

7.3 Maps of chain complexes

Definition 7.11. A map of chain complexes $f:\left(M_{*}, \partial_{*}\right) \rightarrow\left(M_{*}^{\prime}, \partial_{*}^{\prime}\right)$ is a sequence of maps $f_{i}: M_{*} \rightarrow M_{*}^{\prime}$ such that the following diagram commutes for all i :

That is, we must have $f_{i-1} \circ \partial_{i}=\partial_{i}^{\prime} \circ f_{i}$.
Example 7.12. We have the inclusion of simplicial complexes

$$
\partial \Delta_{n}^{s} \rightarrow \Delta_{n}^{s} .
$$

This induces a map of (simplicial) chain complexes ι which is the identity for $i<n$. Consider what changes: in the Δ_{n}^{s} case, we now have a single n-simplex. We know that the space Δ_{n}^{s} is contractible, so it has the homology of a point (0 everywhere except for $H_{0} \cong \mathbb{Z}$). However, if $C_{n}\left(\Delta_{n}^{s}\right) \cong \mathbb{Z}$ and $C_{n}\left(\partial \Delta_{n}^{s}\right)=0$ as observed, then $\operatorname{im}\left(\partial_{n}\right)$ is empty (vs. being \mathbb{Z}) and hence $H_{i}\left(\partial \Delta_{n}^{s}\right) \cong \mathbb{Z}$ for $i=0, n-1$, while remaining 0 elsewhere.

Exercise 7.13. Work out all the details of the inclusion of the boundary of the 2-simplex into the 2-simplex.
Definition 7.14. The induced map on homology f_{*} is the set of maps

$$
f_{* i}: H_{i}\left(M_{*}, \partial_{*}\right) \rightarrow H_{i}\left(M_{*}^{\prime}, \partial_{*}^{\prime}\right),
$$

where the notation $H_{i}(\cdots)$ here refers to the i-th (abstract) homology group induced by the respective chain complex, and where $f_{* i}$ is defined in the obvious way (on equivalence classes in $\operatorname{ker}\left(\partial_{n}\right) / \operatorname{im}\left(\partial_{n+1}\right)$; one verifies the map is well-defined).

Remark. When do two maps of chain complexes induce the same map on homology (groups)? The answer to ths will turn out to be the notion of homotopy between maps of chain complexes. This is analogous to homotopic maps of spaces inducing the same map on homotopy (groups)!

Definition 7.15. A homotopy between maps of chain complexes $s: f \simeq g$ where f, g : $\left(C_{*}, \partial_{*}\right) \rightarrow\left(C_{*}^{\prime}, \partial_{*}^{\prime}\right)$, consists of homomorphisms of abelian groups $s_{n}: C_{n} \rightarrow C_{n+1}^{\prime}$ that satisfy

$$
\partial^{\prime} \circ s+s \circ \partial=f-g
$$

for all indices. This has the property that if $f \simeq g$, then $f_{*}=g_{*}: H_{*}\left(C_{*}\right) \rightarrow H_{*}\left(C_{*}^{\prime}\right)$. (intuitively, $f(x)-g(x)$ "represent the same boundary" when $(d s+s d)(x)$; see https://en. wikipedia.org/wiki/Homotopy_category_of_chain_complexes for explanation and a diagram).

We will now describe an example of homotopic maps of chain complexes via the cone construction.

Definition 7.16. Given an ordered simplicial complex K with geometric realization X (via passage through SCxs), we define the cone $C X$ as the quotient

$$
C X=(X \times I) /(X \times\{1\})
$$

(imagine taking the cylinder $X \times I$ and then identifying one of the ends to be a single point). The cone of an ordered simplicial complex is the ordered simplicial complex CK (with $|C K|=X$) is given by taking:

- The vertex set is $V(K)$ plus the cone vertex x which is greater than all elements of $V(K)$
- For every n-simplex σ, we also create an $(n+1)$-simplex given by $\sigma \cup\{x\}$.

Example 7.17. $\Delta_{n}^{s} \cong C \Delta_{n-1}^{s}$.
Exercise 7.18. The cone is a contractible space (homotopy equivalent to a point).
Example 7.19. We have $C_{n}(C K)$ as the free abelian group with basis

$$
K_{n} \sqcup\left\{\{x\} \cup \sigma \mid \sigma \in K_{n-1}\right\} .
$$

We will show that id, $\epsilon: C_{*}(C K) \rightarrow C_{*}(C K)$ are chain homotopic maps, where

$$
\begin{array}{ll}
\epsilon_{n}: & C_{n}(C K) \rightarrow 0 \text { for } n \neq 0 \\
\epsilon_{0}: & C_{0}(C K) \rightarrow \mathbb{Z}\left(\text { generated by } \epsilon_{0}(x)\right)
\end{array}
$$

Our chain homotopy is given by

$$
s_{n}: C_{n}(C K) \rightarrow C_{n+1}(C K), \quad s(\sigma)=(x, \sigma), s(x, \tau)=0
$$

(i.e., if a simplex contains the cone vertex, it goes to 0 ; if it does not, take it to the simplex with the cone vertex adjoined).

Now observe that

$$
\partial s(\sigma)=\partial(x, \sigma)=\sigma-(x, \partial \sigma), \quad s \partial(\sigma)=(x, \partial \sigma), \quad \partial s(x)+s \partial(x)=0+0=0 .
$$

Altogether, we conclude

$$
\partial s+s \partial=\mathrm{id}-\epsilon .
$$

where the first two observations deal with the case $n>0$, and the last observation deals with $n=0$.

7.4 Tensor products of chain complexes

Definition 7.20. The tensor product of chain complexes $\left(M_{*}, \partial_{*}\right),\left(N_{*}, \partial_{*}^{\prime}\right)$ over R is the chain complex $\left(M_{*} \otimes N_{*}, d_{*}\right)$ given by the sequence of R-modules

$$
\left(M_{*} \otimes_{R} N_{*}\right)_{n}=\bigoplus_{i+j=n} M_{i} \otimes_{R} N_{j}
$$

where the n-th differential is

$$
d(x \otimes y)=\partial(x) \otimes y+(-1)^{i} x \otimes \partial^{\prime}(y)
$$

for $x \in M_{i}, y \in N_{j}$.
Exercise 7.21. Verify that $d^{2}=0$.
Using tensor products, we can motivate the earlier definition of homotopy for chain complex maps (namely, the $d s+s d=f-g$ requirement) by analogy to the definition of homotopy for topological spaces.

Example 7.22. Consider $I=\Delta_{1}^{s}$, which we will also use to denote its chain complex. Let s be a chain homotopy between maps $f, g: M_{*} \rightarrow N_{*}$. There is a chain map

$$
h: M_{*} \otimes I \rightarrow N_{*} .
$$

such that $h(x \otimes[1])=f(x)$ and $h(x \otimes[0])=g(x)$.
Exercise 7.23. Let $s(x)=(-1)^{\operatorname{deg} x} h(x \otimes[1])$. Show the existence of h is equivalent to the $d s+s d=f-g$ requirement.

Remark. For simplicial (and CW complexes), there is an isomorphism $C_{*}(X \times Y) \cong C_{*}(X) \cong$ $C_{*}(Y)$. Then we can view

$$
C_{*}: \text { OrdSCxs } \rightarrow \text { ChCxs }
$$

as a functor that preserves the notion of homotopy in the respective categories, via

$$
h: X \times I \rightarrow Y \quad \rightarrow \quad C_{*} h: C_{*}(X \times I)=C_{*}(X) \otimes C_{*}(I) \rightarrow C_{*}(Y) .
$$

8 [TODO] Simplicial objects

Remark. Content + exercises + etc. for this is scattered across lectures, heaven't organized them. Summary for now, see [Finite, §10] or May's Simplicial Objects for further details.

8.1 Summary

- Degenerate complexes K^{+}(simplices can have repeated vertices); simplicial complexes as special case of degenerate complexes (which we can think of as simplicial sets)
- Can define differentials and thus $C_{*}^{+}(K)$ complexes; this time, C_{*}^{+}is itself a functor
- K and K^{+}give same homology: https://math.uchicago.edu/~may/REU2016/Normalized. pdf
- Defined functor from spaces to simplicial sets
- We now have

$$
\text { Spaces } \rightarrow \text { SimplSets } \rightarrow \text { SimplAb } \rightarrow \text { ChComp } \rightarrow \text { GradedAbGroups }
$$

- We also have SimplSets \rightarrow Spaces by geometric realization.
- (In later lectures: introduced the simplex category and (implicitly) simplicial objects

9 CW complexes

Remark. The following treatment is largely from class, which May admits is a sampling from Concise Course. Some of the definitional exposition is also from [Hatcher, Chapter $0]$.

9.1 Motivation and definition

The concept of the CW complex was invented by J.H.C. Whitehead. As spaces, they are more general than simplicial complexes, while still having the nice property that weak equivalence of CW complexes is homotopy equivalence (Whitehead's theorem). Furthermore, every space is weakly equivalent to a CW complex (CW approximation theorem).

As to what a CW complex is, they are products of a process that is somewhat reverse to giving a space a simplicial decomposition. Consider the simplicial complex described by a tetrahedron. Instead, imagine starting with the 0 -simplices (the vertices), between which we introduce 1 -simplices (the edges), along which we introduce 2 -simplices (the faces). In a sense, CW complexes construct a space from the bottom-up, as opposed to how simplicial complexes were induced by some top-down "saturation".

Definition 9.1. A CW complex is space X that can be constructed in the following manner: Let X^{0} be a set with the discrete topology (we call its elements the vertices). The space X is then

$$
X=\bigcup_{n=0}^{\infty} X^{n}
$$

where the sequence $X^{0} \subseteq X^{1} \subseteq \cdots \subseteq X^{n}$ is defined inductively as follows:

- Given X^{n-1}, take a set of attaching maps (possibly empty)

$$
j_{\alpha}: S^{n-1} \rightarrow X^{n-1}
$$

- Along each of these maps, we attach a copy of D^{n} (identifying the boundary of each D^{n} with each image $j_{\alpha}\left(S^{n-1}\right)$).
- We define the n-skeleton X^{n} to be the pushout in the following diagram.

- That is, it is the quotient space given by the disjoint union $X^{n-1} \sqcup \bigsqcup_{\alpha} D^{n}$ under the identification $x \sim j_{\alpha}(x)$ for every $x \in \partial D_{\alpha}^{n}$. Intuitively, the boundary of the α-th ball is identified with the image of the α-th sphere in X^{n-1}.
- The n-cells of X are ultimately the images of each $D^{n} \rightarrow X^{n} \subseteq X$.

The process may stop at a finite stage (i.e., there are no more attaching maps after some $m<\infty$ and thus $X=X^{m}$). The largest n for which are n-cells is the dimension of the CW complex. Otherwise, things might continue indefinitely where the union is given the weak topology (i.e., a set U is open if and only if $U \cap X^{n}$ is open for all n).

Example 9.2. Topologically, graphs are exactly 1-dimensional CW complexes (when we say graph, multiple edges between vertices and loops at a vertex are both allowed). The points on the graph are X^{0}, and the edges are intervals (copies of D^{1}) glued along pairs of vertices in X^{0} (i.e., images of S^{0}) to give $X=X^{1}$.

Example 9.3. The n-sphere S^{n} can be viewed as a CW complex with one 0 -cell and one n-cell. Take $X^{0}=\{\star\}$, then $X^{n-1}=\cdots=X^{0}$, then a single attaching map $j: S^{n-1} \rightarrow X^{n-1}$ as the constant map to \star to give

$$
X^{n}=\{\star\} \sqcup D^{n} / \sim \cong D^{n} / \partial D^{n},
$$

since \sim identifies $\partial D^{n} \sim \star$ and thus every boundary point to each other. Since $S^{n} \cong$ $D^{n} / \partial D^{n}$, we conclude that $S^{n} \cong X=X^{n}$.

Example 9.4. (TODO: describe the real projective space CW complex) The point is that a simplicial triangulation of $\mathbb{R} P^{n}$ is annoying (see https://mathoverflow.net/questions/ 50382/how-to-triangulate-real-projective-spaces-as-simplicial-complexes-inmathematic), while our CW complex construction is rather nice.

9.2 Operations on CW complexes

Example 9.5. Geometric realizations of simplicial complexes are a specialization of CW complexes:

Definition 9.6. The product of CW complexes X and Y is given where the n-skeleton is

$$
(X \times Y)^{n}=\bigcup_{p+q=n} X^{p} \times Y^{q}
$$

We have

$$
\begin{gathered}
D_{j}^{p} \times S_{k}^{q} \cup S_{j}^{p-1} \times D_{b}^{q} \subseteq D^{p} \times D^{q} \\
I^{p} \times \partial I^{q} \cup \partial I^{p-1} \times I^{q} \subseteq I^{p} \times I^{q}
\end{gathered}
$$

where I is the CW complex with vertices 0,1 and a 1 -cell glued to them.

Definition 9.7. A cellular map between CW complexes is a map that takes n-skeletons to n-skeletons; i.e., $f: X \rightarrow Y$ satisfies $f\left(X^{n}\right) \subseteq Y^{n}$ for all n.

Definition 9.8. A cellular homotopy is a homotopy $h: X \times I \rightarrow Y$ which is a cellular map.

9.3 [TODO] Cellular approximation, etc.

Theorem 9.9 (Cellular approximation). (TODO: haven't done the proof yet, just alluded to it; requires notion of relative CW complexes, not covered until July 21)

Proof. (TODO: the homotopy extension lifting lemma (HELP) comes in that allows homotopies to be done cell by cell, then inductively on dimension.)

Corollary 9.10. Any $f: X \rightarrow Y$ is homotopic to a cellular map. If f is cellular, it induces a map $C_{\#}(X) \rightarrow C_{\#}(Y)$ of cellular chain complexes. If $h: f \simeq g$ is any homotopy where f, g are cellular, then $f \simeq g$ via a cellular homotopy.

Remark. Intuitively, it suffices to consider cellular maps to study the up-to-homotopy space $[X, Y]$.
(TODO: lots of other stuff was said, left out for now)

Part II

Week 4 onwards

Remark. I do have actual day-by-day notes on these, but they're half TODOs and things I didn't understand. Leaving them out for now and just summarizing what was discussed. Will get to this by the time Alg. Top. lectures resume (if not, then end of August; if not, then probably never).

10 Topics covered

Remark. References:

- May’s Concise Course: https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised. pdf
- May's Finite Book: https://math.uchicago.edu/~may/FINITE/F INITEBOOK/F INITEBOOKCollatedDraft pdf

10.1 July 11 (May)

- Quotienting by contractible space (e.g., maximal tree of graph) preserves homology
- Defined cofibrations and fibrations, and the corresponding homotopy extension property (HEP) and homotopy lifting property (HLP). Mapping cylinder and co-cylinders. See [Concise, §6-7].
- We also defined pullbacks (see Categorical Notions section).
- Fibrations generalize unique path lifting of covering spaces.
- Constructed a map that is 0 on homology/homotopy but not nullhomotopic (this one: http://mathoverflow.net/a/20303)

10.2 July 12 (May)

- Idea of replacing arbitrary maps by cofibration/fibration up to homotopy
- Neighborhood deformation retracts (NDR) [Concise, §6]
- How to recognize fibrations
- The long exact sequence for cofibrations [Concise, §8.4]

10.3 July 13 (May)

- The dual long exact sequence for fibrations [Concise, §8.5]
- The homotopy group long exact sequence [Concise, §9]
- Cohomology, take 1 (via cochains and cochain complexes)
- "Homology is useless"; cohomology has a graded ring structure
- Cohomology, take 2 (via Eilenberg-MacLane spaces)
- "Deduced" the Eilenberg-Steenrod axioms
- Generalized cohomology theories as those satisfying all but dimension axioms

10.4 July 14 (Chan)

- The simplex category
- Geometric realization of a simplicial object
- The 2-sided bar construction (https://ncatlab.org/nlab/show/two-sided+bar+construction)
- Classifying spaces of categories via functor B (or posets, or groups)
- Properties of B :
a) B is functorial (i.e., $f: G \rightarrow H$ induces a map $B f: B G \rightarrow B H$). ((TODO: offhand comment about homotopy invariance of B with respect to G-equivariance), e.g.,

$$
\left.\simeq: * \times G^{n} \times * \rightarrow * \times H^{n} \times *\right)
$$

b) $E G$ is contractible
c) $G \simeq \Omega B G$ (if G is good)
d) $E G \rightarrow B G$ is the universal principle G-bundle
e) $B(G \times H) \cong B G \times B H$
f) If G is abelian then $B G$ is a group

- (Proved or at least discussed these by various means)
- One of those proofs used the five lemma from homological algebra (https://en. wikipedia.org/wiki/Five_lemma)

10.5 July 15 (May)

- Pretty much this diagram:

- The nerve functor N and its properties
- The category Triples
- Idea: translate differential topology problems in terms of vector bundles, and then use homotopy theory (via classifying spaces)
- Defined adjoint functors (see Categorical notions)
- Diagram should commute everywhere? (except barycentric triangle at the bottom?)

10.6 July 18 (May)

- Focused on this part:

- Discussed the S, T maps as adjoint pairs of functors
- Mentioned Whitehead's theorem
- Described the T functor on simplicial sets in detail, e.g., [Finite Book, §10.6]
- Singular chain complexes and cell chain complexes as equivalent

10.7 July 19 (May)

- Diagram for the day

- Initial and terminal objects
- Classifying space of a category $B C=|N C|$
- Topological categories as categories whose hom-sets are topological spaces
- \mathcal{E} as a related functor to \mathcal{B}
- $p: E G \rightarrow B G$ as universal principal bundle; every G principal bundle over paracompact space is a pullback of this: https://en.wikipedia.org/wiki/Classifying_ space

10.8 July 20 (May)

- Nerve and T functors preserve products for nice spaces
- Simplices as increasing sums (https://en.wikipedia.org/wiki/Simplex\#Increasing_ coordinates)
- Proved that S, T are homo topy preserving functors
- Idea: do all of homotopy theory in simplicial sets
- By passing to chains, identical homotopy induces identical homology; done without appeal to topology!
- Constructed the chaotic category (https://ncatlab.org/nlab/show/indiscrete+category) for X : \tilde{X}. Turns out $\tilde{G} \cong \mathcal{E} G$

10.9 July 21 (May)

- n-equivalences
- Relative CW complexes [Concise, §10.1]
- HELP and Whitehead theorem [Concise, §10.3]

- Power of Whitehead's theorem (and CW complexes): n-equivalence of CW complexes with dimension less than n is homotopy equivalence

10.10 July 22 (May)

- Used HELP to (sketch) proof of cellular approximation; see [Concise, §10.4]
- Excisive triads, and the "original" axioms of homology: exactness, excision (see EilenbergSteenrod Axioms)
- Used A as upper-2/3s, B as lower-2/3s, in the excision axiom to see how suspension shifts indices of homology by 1
- Introduced additivity, weak equivalence axioms
- (The above treatment is [Concise, §13])
- We then did based case and reduced homology; excision is meaningless, so we use suspension axiom [Concise, §14]
- Technicalities about CW triads vs excisive triads; introduced homotopy pushouts (pushouts where the square commutes only up to homotopy) [Concise, §10.7]

